Microsoft® Research

Mind's Eye: A Recurrent Visual Representation for Image Caption Generation Xinlei Chen¹, Larry Zitnick²

Overview

Goal: Learn a bi-directional mapping between images and their sentence-based descriptions

Usage:

- Bi-directional retrieval
- Caption generation

Key Motivation:

- Visual representations help build long-term memory
- A good caption should capture and help reconstruct the
- visual representation.

Evolving visual memory...

A girl

and boy

knocked

down a tower.

The boy threw

the baseball

and the second s

---→ W_-

Background

Previous RNN Model:

Long Term Memory

¹Carnegie Mellon University, ²Microsoft Research

Our Model

 $P(w_t, V|W_{t-1}) = P(w_t|V, W_{t-1}) P(V|W_{t-1})$

Training:

- Per stage model, every step tries to reconstruct the image
- Weight update from visual memory to image is performed from end to start

Retrieval:

- Given a sentence, evaluate the likelihood that it can be generated by using each image as an input
- Image to sentence retrieval is normalized by sentence length
- Using visual memory helps the performance

Visual Feature Reconstruction

Visual Feature Reconstruction

Generation:

- First sample sentence length from a prior
- With fixed length, sample the most likely caption

Results

A table topped with plates of food and bowls of food. This table is filled with a variety of different dishes.

A large living room filled with furniture and a flat screen ty. A woman stands in the dining area at the table.

A person standing on a beach nex to a surfboard in the ocean. A man in a wetsuit with a surfboard standing on a beach.

the snow. A person up in the air, upside

down while outside

	Flickr 8K		Flickr 30K			MS COCO Val			MS COCO Test			
	PPL	BLEU	METEOR	PPL	BLEU	METEOR	PPL	BLEU	METEOR	BLEU	METEOR	CIDEr
RNN	17.5	4.5	10.3	23.0	6.3	10.7	16.9	4.7	9.8	-	-	-
RNN+IF	16.5	11.9	16.2	20.8	11.3	14.3	13.3	16.3	17.7	-	-	-
RNN+IF+FT	16.0	12.0	16.3	20.5	11.6	14.6	12.9	17.0	18.0	-	-	-
RNN+VGG	15.2	12.4	16.7	20.0	11.9	15.0	12.6	18.4	19.3	18.0	19.1	51.5
Our Approach	16.1	12.2	16.6	20.0	11.3	14.6	12.6	16.3	17.8	-	-	-
Our Approach+FT	15.8	12.4	16.7	19.5	11.6	14.7	12.0	16.8	18.1	16.5	18.0	44.8
Our Approach+VGG	15.1	13.1	16.9	19.1	12.0	15.2	11.6	18.8	19.6	18.4	19.5	53.1
Human	-	20.6	25.5	-	18.9	22.9	-	19.2	24.1	21.7	25.2	85.4

Conclusions

- Visual memory can be learned even with a single image per sentence
- Simple RNNs can remember long-term concepts
- Model is decomposable for bi-directional generation

Carnegie Mellon University

A man that is jumping in the air while riding a skateboard A man on a skateboard is performing a trick at the park.

A group of motorcycles parked on the side of a road. A motorcycle parked in a parking space next to another motorcycle.

A vase of flowers in a vase on a table. A green vase filed with red roses sitting on top of table

A stuffed teddy bear sitting on top of a piece of luggage. This wire metal rack holds several pairs of shoes and sandals.

A brown and white dog sitting on top of a street A picture of a dog laying on the ground.

A close up of a sink in a bathroom. A faucet running next to a dinosuar holding a toothbrush.

A train is stopped at a train station. A purple and yellow train traveling down train tracks.

A group of people that are standing in front of a building. Birds perch on a bunch of twigs in the winter.

A white refrigerator freezer itting in front of a stove stove and oven with cabinets.

A stop sign sitting on the side of a road. A stop sign is mounted upside-down on it's post.

A young girl sitting on a couch with a teddy bear. A boy sitting on a black couch with teddy bears.

A man riding a skateboard on top of a green field. A horse drawn carriage traveling down the middle of a road.

A group of baseball players playing a game of baseball A group of baseball plavers i crowded at the mound

A group of people standing on top of a snow covered slope. A group of people riding skis on top of

Young man wearing glasses ounging on a sofa with three white laptop computers on his lap.

A pair of scissors sitting on top of a white car. A rear view mirror on a bike is reflecting a poster on building.

Sentence Retrieval			Image Retrieval					
R@5	R@10	Med r	R@1	R@5	R@10	Med r		
0.6	1.1	631	0.1	0.5	1.0	500		
18.0	28.6	32	6.1	18.5	29.0	29		
16.5	27.3	28	5.9	20.1	29.6	29		
32.9	44.0	14	9.7	29.6	42.5	15		
19.2	27.3	34	5.2	17.6	26.5	32		
25.7	38.7	20.5	6.5	17.3	28.4	25		
29.1	41.6	17	7.0	23.6	33.6	23		
29.2	42.4	16	7.3	24.6	36.0	20		
21.6	30.3	34	7.6	20.7	30.1	38		
23.0	37.2	21	6.8	24.0	33.9	23.5		
24.4	39.1	19	7.4	25.0	37.5	21		
25.9	40.1	17	7.6	24.9	37.8	20		
37.2	48.5	11	11.5	31.0	42.4	15		
37.9	48.2	10	15.6	38.4	50.6	10		
39.8	49.3	8.5	16.4	40.9	54.8	9		
40.6	50.1	8	17.3	42.5	57.4	7		

	PASCAL				
	PPL	BLEU	METEOR		
Midge [33]	-	2.9	8.8		
Baby Talk [24]	-	0.5	9.7		
Our Approach	25.3	9.8	16.0		
Our Approach+FT	24.6	10.4	16.3		
Our Approach+VGG	23.8	12.0	17.6		
Human	-	20.1	25.0		

• Human Evaluation:

• 5.1% of our captions (Our Approach + VGG) are preferred to human captions, and 15.9% of equal quality

• Explicit visual memory is helpful