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Query: "Paris photo albums"
(Temporal Sequences of images)

Louvre

Problem: Find Storylines art

e We learn the visual and temporal parts of concepts: Wedding, Christmas
e Learn in an unsupervised way with recurrent networks

e Our S-RNN learns the common long-term latent stories

e We train one model for each concept (e.g. Paris)
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e Train RINN over all possible subsequences
e Rewritten as sequential update equations for E and M steps
e Fits in the RNN pipeline: Infer next variable, then backprop
e Prediction is softmax over future images
- Images are represented as their fc7 features

RNN/LSTM

compared to
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S-RNN

Skipping through time

e Prediction is modeled as selecting
one of N future images
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selecting subsequence

Storylines

® Graph m RNN wm LSTM
LSTMSub mS-RNN-

"Wedding" - m K-Means u D-RNN B Sample
70%
Using the probabilistic model 50%
Find the likeliest sequence 30%

Preference of S-RNN over baselines

e Finding a image sequence that captures a concept
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Prediction

30%

sing the model sequentially
Predicting what comes next

e Predicting what comes next in a photo album 15%LL
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Summarization
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Use latent variables, infer subsequence
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Preference of S-RNN over baselines

e Find a short summary of a photo album
o Inferring latent variables gives a summary
e Album can be summarized in various ways:

Album One

Album Two
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Story
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