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AI for Understanding Images?
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program Deep Blue. 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Clarifai (Zeiler et al. 2014)

https://www.clarifai.com/demo


COCO caption (Fang et al. 2015)

I am not really confident, but I think it is a man 
holding a cake.

https://www.captionbot.ai/
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I am not really confident, but I think it is a man 
holding a cake.

Russian chess player Garry Kasparov playing 
against computer program Deep Blue. 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(II) 
• chess is a game

• person plays game

• monitor is part of computer

• computer has computer program

• computer program plays chess

…

• Gary Kasparov is a person

• Gary Kasparov is from Russia

• Deep Blue is a computer program 
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(I)  Expand Vocabulary

• Detectors from the Web [ICCV 2013/2015] 

• Pixel-Level Labeling [CVPR 2014]


• Sense Discovery [CVPR 2015]
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Scalable?

~800M images everyday 
up to 8M tags

~1M boxes 5 years 
 ~3K classes

 (Deng et al., 2009) (Russakovsky et al., 2015) (Kalkowski et al., 2015) 



 (Li & Fei-Fei, 2010) (Chen et al., 2013) (Divvala et al., 2014) 
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• List of categories: ImageNet (1K) + (Object/Attribute) 1.3K
• Use category names as queries
• Train AlexNet to predict category names, fc7 features
• R-CNN, VOC boxes, mAP

Basic Setup

fc7

(Deng et al., 2009) (Chen et al., 2013) 
(Krizhevesky et al., 2012) (Girshick et al., 2014)

@2015



• List of categories: ImageNet (1K) + (Object/Attribute) 1.3K
• Use category names as queries
• Train AlexNet to predict category names, fc7 features
• R-CNN, VOC boxes, mAP

Basic Setup

ImageNet
44.7 w/o Fine-Tune!

fc7

(Deng et al., 2009) (Chen et al., 2013) 
(Krizhevesky et al., 2012) (Girshick et al., 2014)

@2015
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R-CNN AlexNet from Web on VOC 2007
• Basic, (FlickrG)
• with More Data (MD)
• with More related Categories (MC)

FlickrG MD MC
22.9 23.0 24.4

 (Zitnick & Dollar, 2014) (Felzenszwalb et al., 2010)
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R-CNN AlexNet from Web on VOC 2007
• Basic, (FlickrG)
• with More Data (MD)
• with More related Categories (MC)

FlickrG MD MC
22.9 23.0 24.4

 (Zitnick & Dollar, 2014) (Felzenszwalb et al., 2010) 0 20 40 60
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(II)  Build Relationships

• Never Ending Image Learner [ICCV 2013] 

• Spatial Memory Network [ICCV 2017]
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London is capital of UK 



How to Acquire Relationships?

~7M rules 
 ~30 years

How many exist? 
How many are needed?

tree is a plant 
London is capital of UK 



 (Li & Fei-Fei, 2010) (Chen et al., 2013) (Divvala et al., 2014) 



NEIL 
Never Ending Image Learner

Trying to understand images on 
the web and build a structured 

visual knowledge base 
automatically...

@2013

 (Chen et al, 2013)



NEIL’s Knowledge Base

Concepts Relationships
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Scenes
parking lot raceway



Attributes
round shape crowded
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Taxonomy 
or 

Similarity
Corolla is a kind of/looks similar to car

Relationships
Object-Object

Partonomy

wheel is a part of car



Relationships
Object-Scene

car is found in raceway
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Object-Attribute

wheel has round shape



Relationships
Scene-Attribute

trading floor is crowded



NEIL’s Knowledge Base

● Objects 

● Scenes 

● Attributes

● Object-Object 

○ Partonomy


○ Taxonomy/Similarity


● Object-Scene 

● Object-Attribute 

● Scene-Attribute

Concepts Relationships



NEIL at Work:  
Relationship Constrained Learning
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Structured Visual World

car is found on road

sheep is white
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More Relationship Examples
Object-Object

airplane nose is a part of  
airbus 330

eye is a part of baby

van is a kind of ambulance sparrow is a kind of bird



More Relationship Examples
Object-Scene

zebra is found in savanna

helicopter is found in airfield ferris wheel is found in amusement park

leaning tower is found in Pisa
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(III)  Reasoning
• Iterative Reasoning 

[submitted]
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• Iterative Reasoning 

[submitted]
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ADE20K (Zhou et al. 2017)

Missing 
Labels

(Krishna et al., 2016)

http://groups.csail.mit.edu/vision/datasets/ADE20K/


wheel
wheel

wheel

wheel

window

ADE20K (Zhou et al. 2017)

Missing 
Labels

(Krishna et al., 2016)

http://groups.csail.mit.edu/vision/datasets/ADE20K/


Stuff: Cannot Apply Detector

(Mottaghi et al., 2014) (Caesar et al., 2017) (Zhou et al., 2017)
image labels (segmentation) 
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Region Classification
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ResultRegion of Interest (RoI)

ground truth 
boxes

(Girshick, 2015)



Reasoning Framework



What do We Mean by Reasoning Here?

?
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?
person



car

What do We Mean by Reasoning Here?

?

Reasoning — Easy ones help understand Hard ones!

person
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Required Components Breakdown

Base Classifier

recognize 
car

store  
car

Memory

know  
person drives car
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Base Classifier 

(Ren et al., 2015) (Chen & Gupta, 2017)
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Spatial Memory: Preserves Layout

(Chen & Gupta, 2017)
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• Nodes: 
• region:

• class:


• Edges: 
• region graph:

• region assignment:       &      

• knowledge graph:
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Knowledge Graph

• “commonsense" 
• Similarity: cat vs tiger 
• Is-kind-of: BMW vs car 
• Is-part-of: wheel vs car 
• Plural form: person vs people 
• Left-right: left arm vs right arm

• more image-specific 
• Spatial configurations: near-by 
• Actions: ride, hit
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Spatial Reasoning: a Comparison

A

B

Receptive Field

ConvNet based

A

B

Graph based
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ADE20K, Converted

• stuff, object, part, part-of-part,…
• segments converted to bounding boxes
• 20.2K training, 1K validation, 1K testing, 1.5K classes
• relationships


• is-a, is-kind-of, is-part-of, etc
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Small object

mouse: 0.00->0.94 
mouse: 0.30->0.98 



Rare & small object

detergent dispenser: 0.00->0.45 



fuselage: 0.10->0.87 

Occlusion

fuselage: 0.26->0.39 fuselage: 0.01->0.76 



Failure case

remote control: 0.00->0.00 
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Real-World Scenario: Missing Regions
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Real-World Scenario: Missing Regions

top 
proposal

region proposal methods can fail…

Is our reasoning framework 
ROBUST to missing regions in 

current detectors?
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Region Dropping
• Idea


• filter out hard ground truth regions

• Hardness metric

• IoU from best proposal

• Settings

• Pre: filter before reasoning

• Post: filter after reasoning

• Same for baseline Res-50

IoU from proposal: 0.9

>=0.8!
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Thank You!




