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* chess is a game

* person plays game

« monitor is part of computer

* computer has computer program
« computer program plays chess

- Gary Kasparov is a person
* Gary Kasparov is from Russia
- Deep Blue is a computer program
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Scalable?
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Basic Setup @2015

List of categories: ImageNet (1K) + (Object/Attribute) 1.3K
Use category names as queries

Train AlexNet to predict category names, fc7 features
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« “commonsense”
e Similarity: cat vs tiger
e Is-kind-of: BMW vs car
e Is-part-of: wheel vs car
 Plural form: person vs people
e Left-right: left arm vs right arm

* more image-specific
e Spatial configurations: near-by
* Actions: ride, hit
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ADE20K, Converted

- stuff, object, part, part-of-part,...
« segments converted to bounding boxes
« 20.2K training, 1K validation, 1K testing, 1.5K classes

* relationships
* is-a, is-kind-of, is-part-of, etc
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LOCAL.: convolution-based
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per-class 40.1 40.8 41.0 47.9

per-instance] 67.0 68.2 68.2 71.6
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COCO Detection Dataset
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COCO Detection Dataset
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COCO: sheep

ADE20K: grass



Real-World Scenario: Missing Regions
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Real-World Scenario: Missing Regions

top Is our reasoning framework
R ROBUST to missing regions in
R current detectors?

region proposal methods can falil...
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Region Dropping >=0.8!

o |dea loU from proposal: 0.9

- filter out hard ground truth regions

« Hardness metric

+ loU from best proposal

- Settings
 Pre: filter before reasoning

- Post: filter after reasoning

- Same for baseline Res-50
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* Detectors from the
Web [ICCV 13/15]

* Pixel-Level Labeling - Never Endin

[CVPR 2014] Learner [ICCV 2
+ Sense DiSCOVGry . Spat|a| Memory
[CVPR 2015] Network [ICCV 2017]

(1) Expand Vocabulary (ll) Build Relationships



Thank You!

* Detectors from the
Web [ICCV 13/15]

* Pixel-Level Labeling - Never Endin

[CVPR 2014] Learner [ICCV 2
+ Sense Discovery - Spatial Memory
[CVPR 2015] Network [ICCV 2017]

(1) Expand Vocabulary (ll) Build Relationships






