Learning and Reasoning with Visual Knowledge

> Xinlei Chen Carnegie Mellon University

> Thesis Committee: Abhinav Gupta (Chair) Martial Hebert Tom Mitchell Fei-Fei Li, Stanford University Andrew Zisserman, University of Oxford

Al is Beating Best Humans!

96/97: Deep Blue

Al is Beating Best Humans!

96/97: Deep Blue

16/17: AlphaGo

Al for Understanding Images?

Russian chess player Garry Kasparov playing against computer program Deep Blue.

Garry Kasparov vs

I am not really confident, but I think it is a man holding a cake.

- chess is a game
- person plays game
- monitor is part of computer
- computer has computer program

Asparo

- computer program plays chess
- Gary Kasparov is a person
- Gary Kasparov is from Russia
- Deep Blue is a computer program

(II) Build Relationships

(III) Reasoning

(I) Expand Vocabulary

 Detectors from the Web [ICCV13/15]

(I) Expand Vocabulary

- Detectors from the Web [ICCV13/15]
- Pixel-Level Labeling
 [CVPR 2014]

kayak

- Detectors from the Web [ICCV13/15]
- Pixel-Level Labeling [CVPR 2014]
- Sense Discovery [CVPR 2015]

Explicit, Structured Relationships

airplane is found in runway

sky is blue

(II) Build Relationships

 Never Ending Image Learner [ICCV 2013]

- Never Ending Image Learner [ICCV 2013]
- Spatial Memory Network [ICCV 2017]

 Detectors from the Web [ICCV 13/15]

(I) Expand Vocabulary (II) Build Relationships (III) Reasoning

- Detectors from the Web [ICCV 13/15]
- Pixel-Level Labeling [CVPR 2014]
- Sense Discovery [CVPR 2015]

- Never Ending Image Learner [ICCV 2013]
- Spatial Memory Network [ICCV 2017]

 Iterative Reasoning [submitted] (III) Reasoning

(I) Expand Vocabulary (II) Build Relationships

- Detectors from the Web [ICCV 2013/2015]
- Pixel-Level Labeling [CVPR 2014]
- Sense Discovery [CVPR 2015]

(I) Expand Vocabulary

Harness Human Intelligence

(Russell et al., 2007) (Everingham et al., 2010) (Lin et al., 2014)

Harness Human Intelligence

(Russell et al., 2007) (Everingham et al., 2010) (Lin et al., 2014)

Scalable?

(Deng et al., 2009) (Russakovsky et al., 2015) (Kalkowski et al., 2015)

Scalable?

~1M boxes 5 years ~3K classes

IM 🖧 GENET

(Deng et al., 2009) (Russakovsky et al., 2015) (Kalkowski et al., 2015)

Scalable?

~1M boxes 5 years ~3K classes

~800M images everyday up to 8M tags

(Deng et al., 2009) (Russakovsky et al., 2015) (Kalkowski et al., 2015)

(Li & Fei-Fei, 2010) (Chen et al., 2013) (Divvala et al., 2014)
chess

chess detector

Dissecting Current Detectors

Visual Features from the Web

(Chen & Gupta, 2015)

(Chen & Gupta, 2015)

• List of categories: ImageNet (1K) + (Object/Attribute) 1.3K

- List of categories: ImageNet (1K) + (Object/Attribute) 1.3K
- Use category names as queries

- List of categories: ImageNet (1K) + (Object/Attribute) 1.3K
- Use category names as queries
- Train AlexNet to predict category names, fc7 features

- List of categories: ImageNet (1K) + (Object/Attribute) 1.3K
- Use category names as **queries**
- Train AlexNet to predict category names, fc7 features
- R-CNN, VOC boxes, mAP

- List of categories: ImageNet (1K) + (Object/Attribute) 1.3K
- Use category names as **queries**
- Train AlexNet to predict category names, fc7 features
- R-CNN, VOC boxes, mAP

Trial 1: Train from Flickr

Trial 1: Train from Flickr

ImageNet	Flickr
44.7	38.1

Trial 1: Train from Flickr

flickr 1.2M

PASCAL2 Pattern Analysis, Statistical Modelling and Computational Learning

ImageNet	Flickr	Scratch
44.7	38.1	40.7

Two Types of Web Data

Two Types of Web Data

Two Types of Web Data

Trial 2: More Data

flickr

Trial 2: More Data

flickr + Google

Trial 2: More Data

flickr + Google

ImageNet	FlickrS	GFAII
44.7	38.1	40.5

Trial 3: Train from Google

Trial 3: Train from Google

ImageNet	GFAII	Google
44.7	40.5	42.7

Google

180

Trial 4: Staged Training

flickr

Trial 4: Staged Training

Trial 4: Staged Training cat bill gates bus yellow Google

flickr ImageNet Google FineTune 44.7 42.7

bus tree lemon bill gates

0

43.4

Final Approach: Staged + Graph

Final Approach: Staged + Graph

Final Approach: Staged + Graph

Graph: Confusion Matrix

temple

rabbit

bossa nova

house finch

pharmacist

tree

van

plain

Accuracy
Graph: Confusion Matrix

house finch

pharmacist

lab coat

doctor

tobacco shop

tree

rabbit

van

plain bossa nova

Accuracy

sparrow

Similar/Confusing Categories

indigo bunting

baya weaver

goldfinch

angkor

obelisk

stupa

megalith

stethoscope

buckeye

wood rabbit

hare

muzzle

malinois

guitar

camionnette

club wagon

open area

downbeat

minibus

sky

ukulele

cello

natural

tree stump

doberman

german

shepherd

Graph: Confusion Matrix

Category

house finch

pharmacist

lab coat

doctor

tobacco shop

rabbit

plain

Accuracy

sparrow

obelisk

angkor

indigo bunting

aoldfinch

stethoscope

banyan

buckeye

natural

hare

malinois

muzzle

van

camionnette

open area

rapeseed

club wagon

minibus

tree stump

angora

doberman

bull mastiff

toyota hiace

sky

ukulele

german shepherd

Graph: Confusion Matrix

house finch

lab coat

doctor

tobacco shop

tree

rabbit

muzzle

van

bossa nova

Accuracy

sparrow

Similar/Confusing Categories

indigo bunting

baya weaver

goldfinch

alle

angkor

obelisk

Masal

megalith

stethoscope

buckeye

natural

tree stump

banyan

hare

wood rabbit

angora

wallaby

plain

camionnette

open area

guitar

club wagon

rapeseed

vallev

toyota hiace

minibus

doberman

german

shepherd

bull mastiff

sky

cello

ukulele

Final Approach: Staged + Graph

Final Approach: Staged + Graph

Location Boxes from the Web

Web Images: No Location

car

Noise

Refresh Your Ride with Sony Video Receiven war god:

Light Nodel

Subcategory Discovery

Subcategory Discovery

Run Rus Hauter man 191

Exclude Safetylet

car Exemplar Detectors

Exemplar Detectors

car

car Exemplar Detectors

Affinity Graph

nilgai Subcategories (HOG)

bean Subcategories (Polysemy)

falcon Subcategories (HOG)

Subcategories (web fc7)

• Basic, (FlickrG)

- Basic, (FlickrG)
- with More Data (MD)

- Basic, (FlickrG)
- with More Data (MD)
- with More related Categories (MC)

llama

alpaca

Iana

- Basic, (FlickrG)
- with More Data (MD)
- with More related Categories (MC)

FlickrG	MD	MC
22.9	23.0	24.4

lama

- Basic, (FlickrG)
- with More Data (MD)
- with More related Categories (MC)

aeroplane (loc): ov=0.38 1-r=0.94

aeroplane (loc): ov=0.28 1-r=0.93

aeroplane (loc): ov=0.38 1-r=0.94

aeroplane (loc): ov=0.28 1-r=0.93

bottle (loc): ov=0.39 1-r=0.99

bicycle (loc): ov=0.50 1-r=0.83

bicycle (sim): ov=0.00 1-r=0.77

aeroplane (loc): ov=0.44 1-r=0.99

aeroplane (loc): ov=0.38 1-r=0.94

aeroplane (loc): ov=0.28 1-r=0.93

bottle (loc): ov=0.39 1-r=0.99

person (oth): ov=0.00 1-r=1.00

bike

person

bicycle (loc): ov=0.41 1-r=0.85

person (loc): ov=0.33 1-r=1.00

bottle (loc): ov=0.30 1-r=0.99

bicycle (loc): ov=0.50 1-r=0.83

bicycle (loc): ov=0.38 1-r=0.79

person (oth): ov=0.00 1-r=1.00

person (oth): ov=0.02 1-r=1.00

person

person (oth): ov=0.00 1-r=1.00

person (oth): ov=0.02 1-r=1.00

person (oth): ov=0.00 1-r=1.00

caprice

Never Ending Image Learner [ICCV 2013]

Spatial Memory Network [ICCV 2017]

(II) Build Relationships

1. Relationships Help Single Image Understanding

1. Relationships Help Single Image Understanding

1. Relationships Help Single Image Understanding

2. Relationships Help Learning Process

How to Acquire Relationships?

How to Acquire Relationships?

Home of smarter solutions
How to Acquire Relationships?

Home of smarter solutions

tree is a plant London is capital of UK

~7M rules ~30 years

How to Acquire Relationships?

tree is a plant London is capital of UK

~7M rules ~30 years

How many exist? How many are needed?

(Li & Fei-Fei, 2010) (Chen et al., 2013) (Divvala et al., 2014)

Never Ending Image Learner

Trying to understand images on the **web** and build a structured visual knowledge base automatically...

NEIL's Knowledge Base

Concepts

Relationships

Objects

Camry

parking lot

raceway

Attributes

round shape

crowded

Relationships Object-Object

Corolla is a kind of/looks similar to car

Relationships Object-Object

Corolla is a kind of/looks similar to car

Partonomy

wheel is a part of car

Relationships

Object-Scene

car is found in raceway

Relationships Object-Attribute

wheel has round shape

Relationships Scene-Attribute

trading floor is crowded

NEIL's Knowledge Base

Concepts

- Objects
- Scenes
- Attributes

Relationships

- Object-Object
 - Partonomy
 - Taxonomy/Similarity
- Object-Scene
- Object-Attribute
- Scene-Attribute

NEIL at Work: Relationship Constrained Learning

(0) Web Images

computer

monitor

keyboard

(1) Subcategory Discovery

computer

monitor

keyboard

monitor keyboard television computer -(3)(3)

(1) Subcategory Discovery

(2) Train Models

- 展開の変
- computer (1) computer (2) computer (3)

@2013

- monitor (1)

keyboard

- _
- •

Micro-vision

Macro-vision

and the second second And the Rolling ----A CONTRACTOR 王子家族 A STATE 「「「「「「「」」」 I GREEK ALL CARDEN CARDEN San an an an A STATE STATE and a second second second second second And the same set of a success 2.0 Show and a start of the start OO LE State of the second second AL ADTAL a the lots and and the A 1 100 Palana 23 A REAL PROPERTY AND A REAL Contraction of The second s S. S. S. S. C. S. S. **3** 4 an stalls a state and an inter Prove the A CONTRACTOR OF THE OWNER OF THE All and a state of the second se A SALAR AN Sold States 244 and the second · · · · · Contract of the 在中国民 强 國法 新 一 3 A CONTRACTOR Non Printing in the and the second THE REAL PROPERTY AND INCOMENTAL ORDER The second second REAL PROPERTY AND THE REAL PROPERTY. TO CONTRACTOR ON THE 111日本 11日 在上海中的东西加州市中的马口的 1. A CALL A THE REAL OF 12 00 CALCUNCT. A DAY NOT

Structured Visual World

car is found on road

sheep is white

Learned relationships:

- keyboard is a part of computer
- monitor is a part of computer
- television looks similar to monitor

· television looks similar to monitor

keyboard

More Relationship Examples Object-Object

airplane nose is a part of airbus 330

van is a kind of ambulance

sparrow is a kind of bird

eye is a part of baby

More Relationship Examples Object-Scene

helicopter is found in airfield

ferris wheel is found in amusement park

leaning tower is found in Pisa

zebra is found in savanna

car The Role of Relationships

car The Role of Relationships

25th Iteration

Egypt The Role of Relationships

Egypt The Role of Relationships

25th Iteration

trench The Role of Relationships

trench The Role of Relationships

25th Iteration

The Story So Far

(I) Expand Vocabulary

(II) Build Relationships

The Story So Far

(I) Expand Vocabulary

(II) Build Relationships

(III) Reasoning

Iterative Reasoning
[submitted]

(III) Reasoning

Iterative Reasoning
[submitted]

Task for Evaluation

Region Proposal

Region Proposal

Region of Interest (Rol)

Region Proposal

Region of Interest (Rol)

Classification

ConvNet

Region Proposal

Region of Interest (Rol)

Result

Classification

Our Task: Region Classification

Our Task: Region Classification

Reasoning Calls for More —

classes

Reasoning Calls for More —

classes

Reasoning Calls for More —

D

Missing Labels

(Krishna et al., 2016)

Missing Labels

(Krishna et al., 2016)

Stuff: Cannot Apply Detector

image

labels (segmentation)

(Mottaghi et al., 2014) (Caesar et al., 2017) (Zhou et al., 2017)

Region Classification

Region Classification

Reasoning Framework

Reasoning – Easy ones help understand **Hard** ones!

recognize car

recognizestoreknowcarcarperson drives car

Base Classifier

(Chen & Gupta, 2017)

(Chung et al., 2014) Things to Put into Spatial Memory

(Chen & Gupta, 2017)

(Chen & Gupta, 2017)

Knowledge Base

(Carlson et al., 2010)

Our Graph Structure

- Nodes:
 - region: M_r
 - class: M_c

Our Graph Structure

- Nodes:
 - region: M_r
 - class: M_c
- Edges:
 - region graph: $\mathcal{E}_{r \to r}$
 - region assignment: $e_{r \to c} \& e_{c \to r}$
 - knowledge graph: $\mathcal{E}_{c \rightarrow c}$

- → region --class ←
- \rightarrow region edge
 - ___ assignment
 - ←→ class edge 1
 - class edge 2

Knowledge Graph $\mathcal{E}_{c \rightarrow c}$

- "commonsense"
 - Similarity: cat vs tiger
 - Is-kind-of: BMW vs car
 - Is-part-of: wheel vs car
 - Plural form: person vs people
 - Left-right: left arm vs right arm

Knowledge Graph $\mathcal{E}_{c \rightarrow c}$

- "commonsense"
 - Similarity: cat vs tiger
 - Is-kind-of: BMW vs car
 - Is-part-of: wheel vs car
 - Plural form: person vs people
 - Left-right: left arm vs right arm
- more image-specific
 - Spatial configurations: near-by
 - Actions: ride, hit

Reasoning: Message Passing w/ Edges

Edge Type

Reasoning: Message Passing w/ Edges

Edge Type

Adjacency Matrix

Reasoning: Message Passing w/ Edges

 e_2 :

 m_1

 m_3

 m_2

 m_4

G

 $= \sigma(\Sigma G_j)$

Edge Type

Adjacency Matrix

Features

 MW_1

 $g_{1,1} = m_1 W_1$

 $g_{2,1}$

 $g_{3,1}$

 $g_{4,1}$

 MW_2

 $g_{1,2}$

 $g_{2,2}$

 $g_{3,2}$

 $g_{4,2}$

inputs M_r M_c

Spatial Path: within Region Graph

Spatial Path: within Region Graph

Spatial Reasoning: a Comparison

Graph based

Global Module: Graph Reasoning

 $G_r^{spatial}$

 $G_r^{semantic}$

- \rightarrow region edge
- ___ assigr

 - •—• class edge 2

Global Module: Graph Reasoning

Global Module: Graph Reasoning

Combine Predictions: Attention

Combine Predictions: Attention

$$f = \sum_{t} w_t f_t, \qquad w_t = \frac{\exp(-a_t)}{\sum_{t'} \exp(-a_{t'})}$$

Experimental Results

• stuff, object, part, part-of-part,...

- stuff, object, part, part-of-part,...
- segments converted to bounding boxes

- stuff, object, part, part-of-part,...
- segments converted to bounding boxes
- 20.2K training, 1K validation, 1K testing, 1.5K classes

- stuff, object, part, part-of-part,...
- segments converted to bounding boxes
- 20.2K training, 1K validation, 1K testing, 1.5K classes
- relationships
 - is-a, is-kind-of, is-part-of, etc

AP	Res-50
per-class	40.1
per-instance	67.0

AP	Res-50	Res-101	High-Res
per-class	40.1	40.8	41.0
per-instance	67.0	68.2	68.2

AP	Res-50	Res-101	High-Res	Local
per-class	40.1	40.8	41.0	47.9
per-instance	67.0	68.2	68.2	71.6

AP	Res-50	Res-101	High-Res	Local	Global
per-class	40.1	40.8	41.0	47.9	44.5
per-instance	67.0	68.2	68.2	71.6	69.8

AP	Res-50	Res-101	High-Res	Local	Global	Ours
per-class	40.1	40.8	41.0	47.9	44.5	48.5
per-instance	67.0	68.2	68.2	71.6	69.8	72.6

AP	Res-50	Res-101	High-Res	Local	Global	Ours
per-class	40.1	40.8	41.0	47.9	44.5	48.5
per-instance	67.0	68.2	68.2	71.6	69.8	72.6

AP	Res-50
per-class	83.7
per-instance	83.2

AP	Res-50	Local
per-class	83.7	85.8
per-instance	83.2	84.9

AP	Res-50	Local	Global
per-class	83.7	85.8	86.9
per-instance	83.2	84.9	85.6

AP	Res-50	Local	Global	Ours
per-class	83.7	85.8	86.9	87.4
per-instance	83.2	84.9	85.6	86.0

AP	Res-50	Local	Global	Ours
per-class	83.7	85.8	86.9	87.4
per-instance	83.2	84.9	85.6	86.0

AP	Res-50	Local	Global	Ours
per-class	83.7	85.8	86.9	87.4
per-instance	83.2	84.9	85.6	86.0

Real-World Scenario: Missing Regions

region proposal methods can fail...

Real-World Scenario: Missing Regions

region proposal methods can fail...

Is our reasoning framework **ROBUST** to missing regions in current detectors?

Region Dropping

- Idea
 - filter out hard ground truth regions

Region Dropping

- Idea
 - filter out hard ground truth regions
- Hardness metric
 - IoU from best proposal

Region Dropping

• Idea

- filter out hard ground truth regions
- Hardness metric
 - IoU from best proposal

Region Dropping >=0.8!

- Idea
 - filter out hard ground truth regions
- Hardness metric
 - IoU from best proposal

Region Dropping >=0.8!

Idea

- filter out hard ground truth regions
- Hardness metric
 - IoU from best proposal

Region Dropping >=0.8!

Idea

- filter out hard ground truth regions
- Hardness metric
 - IoU from best proposal
- Settings
 - Pre: filter before reasoning
 - **Post**: filter after reasoning

• Same for baseline Res-50

 Detectors from the Web [ICCV 13/15]

(I) Expand Vocabulary (II) Build Relationships (III) Reasoning

- Detectors from the Web [ICCV 13/15]
- Pixel-Level Labeling [CVPR 2014]
- Sense Discovery [CVPR 2015]

- Never Ending Image Learner [ICCV 2013]
- Spatial Memory Network [ICCV 2017]

 Iterative Reasoning [submitted] (III) Reasoning

(I) Expand Vocabulary (II) Build Relationships

Thank You!

- Detectors from the Web [ICCV 13/15]
- Pixel-Level Labeling [CVPR 2014]
- Sense Discovery [CVPR 2015]

- Never Ending Image Learner [ICCV 2013]
- Spatial Memory Network [ICCV 2017]

 Iterative Reasoning [submitted] (III) Reasoning

(I) Expand Vocabulary (II) Build Relationships