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Abstract
There have been some recent efforts to build visual

knowledge bases from Internet images. But most of these
approaches have focused on bounding box representation
of objects. In this paper, we propose to enrich these knowl-
edge bases by automatically discovering objects and their
segmentations from noisy Internet images. Specifically, our
approach combines the power of generative modeling for
segmentation with the effectiveness of discriminative mod-
els for detection. The key idea behind our approach is
to learn and exploit top-down segmentation priors based
on visual subcategories. The strong priors learned from
these visual subcategories are then combined with discrim-
inatively trained detectors and bottom up cues to produce
clean object segmentations. Our experimental results indi-
cate state-of-the-art performance on the difficult dataset in-
troduced by [29]. We have integrated our algorithm in NEIL
for enriching its knowledge base [5]. As of 14th April 2014,
NEIL has automatically generated approximately 500K seg-
mentations using web data.

1. Introduction
Object recognition remains one of the most stubborn

problems in the field of computer vision. There have been
two major directions of research. The first is inspired by
Marr’s vision [25] and involves using bottom-up cues such
as color and contrast to group pixels into segments and
then recognize objects. The second and more popular ap-
proach is to use sliding windows and solve a binary classifi-
cation problem of whether an object is present or not. While
the segmentation-based approach seems more intuitive and
even draws support from psychological theories, the second
direction seems to be empirically outperforming the first.
Why is that?

We believe that the empirical boost for sliding window
based approaches comes from the “magic of data.” These
approaches have been able to exploit the power of data due
to increasing amount of available data in the form of both
positive and negative examples. For example, our own ef-
fort, NEIL [5] has been automatically labeling data with
bounding boxes since July 2013. It has generated approxi-
mately 800K bounding box labels in last eight months. On
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Figure 1. We propose an approach to discover objects and perform
segmentation in noisy Internet images (a). Our approach builds
upon the advances in discriminative object detection to discover
visual subcategories and build top-down priors for segmentation
(b). These top-down priors, discriminative detectors and bottom-
up cues are finally combined to obtain segmentations (c).

the other hand, segmentation based recognition approaches
have still struggled to exploit big data due to the unscalable
nature of the required supervision: while it requires only a
few seconds to label a bounding-box, hand-labeling a good
segmentation is a more labor intensive task. Even crowd
sourcing based tools have not been able to generate huge
segmentation datasets.

In this paper, we focus on generating a large segmenta-
tion knowledge base which we believe is also the next step
in enriching visual knowledge bases such as NEIL. Given
a large collection of noisy Internet images of some object
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class (say “car”), our goal is to automatically discover the
object instances and their segmentations. There has been
some recent work on joint segmentation of multiple images.
Most of these approaches focus on using generative models
for extracting recurring patterns in images. On the other
hand, much of the advancement in the field of object detec-
tion has come from learning discriminative models using
large quantities of visual data. In this work, we propose a
conceptually simple yet powerful approach that combines
the power of generative modeling for segmentation with the
effectiveness of discriminative models for detection to seg-
ment objects from noisy Internet images.

The central idea behind our approach is to learn top-
down priors and use these priors to perform joint segmenta-
tion. But how do we develop top-down priors? Approaches
such as Class-cut [1], Collect-cut [18] and [15] develop top-
down priors based on semantic classes: i.e., they build ap-
pearance models for semantic classes such as cars, airplanes
etc. and use them in a graph-based optimization formula-
tion. But are these semantic classes the right way to develop
top-down priors? In recent years, we have learned that the
high intra-class variations within a semantic class leads to
weak priors and these priors fail to significantly improve
performance. On the other hand, clustering the data into
visual subcategories [6, 5] followed by learning priors on
these visual subcategories has shown a lot of promise. In
this paper, we build upon these ideas and use visual subcat-
egories to build top-down segmentation priors and improve
joint segmentation of multiple images. We use the advances
in learning exemplar based detectors [24, 10] to discover vi-
sual subcategories and “align” the instances in these visual
subcategories; these visual subcategories are then exploited
to build strong top-down priors which are combined with
image evidence based likelihoods to perform segmentation
on multiple images. Figure 1 shows how our approach can
extract aligned visual subcategories and develop strong pri-
ors for segmentation. Our experimental results indicate that
generating priors via visual subcategories indeed leads to
state-of-the-art performance in joint segmentation of an ob-
ject class on standard datasets [29]. But more importantly,
we have integrated our algorithm in NEIL and it has gener-
ated approximately 500K segmentations using web data.

2. Related Work
Segmentation is a fundamental problem in computer

vision. Early works focused on generating low-level or
bottom-up groupings that follow Gestalt laws – the classic
pipeline was to use low-level features (such as color, tex-
ture, etc. [23]) as input to segmentation or clustering meth-
ods [32, 14]. However, for real-world images they fail to
produce consistent object segmentation. One of the main
reasons for the failure of pure bottom up segmentation is
that an object is a complex concept. Generally object seg-
mentation requires combining multiple visually-consistent

clusters, which turns out to be too difficult for the vanilla
bottom-up segmentation algorithms.

One way to incorporate top-down information is to learn
priors in terms of semantic object categories in a fully su-
pervised manner [16, 26, 22]. To reduce the burden of this
annotation, semi- and weakly-supervised approaches have
been developed. For example, [1] uses image-level object
annotation to learn priors. Another popular way to reduce
annotation is to use interactive supervision in terms of a
few simple scribbles [4, 3, 27, 21]. Finally, approaches
have tried using other kind of priors including bounding
boxes [20], context [19, 18], saliency [8] and object prob-
ability [2, 17, 15]. However, most of these priors are still
learned on semantic object classes which often leads to
weak priors due to intra-class and pose variations.

In order to learn priors with little or no annotations, re-
cent approaches have also tried using object discovery to
extract segments from images automatically, followed by
learning of priors (see [35] for an overview). A common
approach [34, 30] is to treat the unlabeled images as docu-
ments and objects as topics, and use generative topic-model
approaches such as Latent Dirichlet Allocation (LDA) and
Hierarchical Pitman-Yor (HPY) to learn the distribution and
segmentation of multiple classes of objects simultaneously.
However, completely unsupervised object discovery and
learning of segmentation prior often tends to be non-robust
due to the problem being under-constrained.

In this paper, we follow the regime of using web-based
supervision to learn segmentation priors [29]. We use query
terms to obtain noisy image sets from Internet and then
learn models and segmentation priors from these images.
However, instead of modeling segmentation priors and con-
straints based on semantic classes, we model them based
on visual subcategories, which are visually homogeneous
clusters and have much less intra-class variations.

Our work is also related to co-segmentation, where the
task is to simultaneously segment visually similar objects
from multiple images at the same time [29, 28, 3, 11, 13,
36]. Most of these approaches assume that all images have
very similar objects with distinct backgrounds, and they try
to learn a common appearance model to segment these im-
ages. However, the biggest drawback with these approaches
is that they are either susceptible to noisy data or assume
that an object of interest is present in every image of the
dataset. The closest work to our approach is the recent pa-
per by [29], which proposes to use a pixel correspondence-
based method for object discovery. They model the spar-
sity and saliency properties of the common object in im-
ages, and construct a large-scale graphical model to jointly
infer an object mask for each image. Instead of using
pairwise similarities, our approach builds upon recent suc-
cess of discriminative models and exploits visual subcate-
gories. Our discriminative machinery allows us to local-
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Figure 2. Overview of our approach

ize the object in the scene and the strong segmentation
priors help us achieve state-of-the-art performance on the
benchmark dataset. Finally, we believe our approach is
more scalable than other co-segmentation approaches (in-
cluding [29]) since we never attempt to solve a global joint
segmentation problem, but instead only perform joint seg-
mentation on subsets of the data.

3. Our Approach
Our goal is to extract objects and their segments from

large, noisy image collections in an unsupervised manner.
We assume that the collection is obtained as a query re-
sult from search engines, photo albums, etc. and therefore,
a majority of these images contain the object of interest.
However, we still want to reject the images which are noisy
and do not have the object instance. While one can use ap-
proaches like graph-cut with center prior to discover the ob-
ject segments, such an approach fails due to the weak center
prior in case of Internet images. What we need is some top-
down information, which can be obtained by jointly seg-
menting the whole collection. Most approaches build class-
based appearance models from the entire image collection
to guide the segmentation of individual instances. However,
in this work, we argue that due to high intra-class and pose
variations such priors are still weak and do not improve the
results significantly. Instead, we build priors based on vi-
sual subcategories where each subcategory corresponds to a
‘visually homogeneous’ cluster in the data (low intra-class
variations) [6, 5]. For example, for an airplane, some of
the visual subcategories could be commercial plane in front
view, passenger plane in side view, fighter plane in front
view etc. But how does one seed segmentations for these
visual subcategories before learning segmentation priors?

In this work, instead of directly discovering disjoint vi-
sual subcategories, we first cluster the visual data into over-
lapping and redundant clusters (an instance can belong to
one or more clusters). These overlapping clusters are built
using the recent work in training instance based detectors
and then using these detectors to find similar instances in
the training data [24, 10, 7, 33]. Because we run these
detectors in a sliding window manner, our clusters have
nicely aligned visual instances. Exploiting the fact that im-
ages in these clusters are well aligned, we run a joint co-
segmentation algorithm on each cluster by introducing an

extra constraint that pixels in the same location should have
similar foreground-background labels. Introducing this ex-
tra constraint in conjunction with high-quality clusters leads
to clean segmentation labels for the images.

Our clusters are tight (low recall, high precision) with
very few instances, and therefore some of the clusters are
noisy, which capture the repetition in the noisy images. For
example, 5 motorbikes in the car collection group together
to form a cluster. To clean-up the noisy clusters, we merge
these overlapping and redundant clusters to form visual sub-
categories. The subcategories belonging to the underlying
categories find enough repetition in the data that they can be
merged together. On the other hand, the noisy clusters fail to
cluster together and are dropped. Once we have these large
subcategories, we pool in the segmentation results from the
previous step to create top-down segmentation priors. We
also train a discriminative Latent-SVM detector [9] for each
of the cluster. These trained detectors are then used to detect
instances of object across all the images. We also generate
a segmentation mask for each detection by simply transfer-
ring the average segmentation for each visual subcategory.
Finally, these transferred masks are used as the top-down
prior and a graph-cut algorithm is applied to extract the fi-
nal segment for each image. The outline of our approach is
shown in Figure 2.

3.1. Discovering Aligned and Homogenous Clusters
To build segmentation priors, we first need to initialize

and segment a few images in the collection. We propose
to discover strongly coherent and visually aligned clusters
(high precision, low recall). Once we have visually ho-
mogeneous and aligned clusters, we propose to run a co-
segmentation approach with strong co-location constraints
and obtain seed segments in the dataset. But how do we
discover visually coherent and aligned clusters? One naı̈ve
approach would be to sample a random set of patches and
then cluster these patches using standard k-means. How-
ever, in the case of random patches it is extremely unlikely
to hit multiple occurrences of the same object in a well-
aligned manner unless we sample hundreds of thousands of
windows per image. On this scale, clustering approaches
tend to give incoherent clusters as shown by recent ap-
proaches [7]. Motivated by recent work on discriminative
clustering via detection [7, 33, 5], we propose an approach



Figure 3. (Top) Examples of strongly aligned and visually coherent clusters that we discovered. (Bottom) We also show the result of our
modified co-segmentation approach on these clusters.

to create coherent, aligned but overlapping and redundant
clusters in the data.

Our approach is as follows: we first use each image as
a cluster seed and we build clusters by detecting similar
patches in the rest of the data. Specifically, we train an ex-
emplar detector [10, 24] (eLDA in our case) based on Color-
HOG (CHOG) features [31]. Once we have an eLDA detec-
tor for each cropped image, we use this detector to detect
similar objects on all the images in the collection and select
the top k detections with highest scores. Since CHOG fea-
ture focuses on shapes/contours, the resulting clusters are
well aligned, which serves as the basis for the following
joint segmentation and subcategory discovery step. Note
that since we develop a cluster for each image and some
images are noisy (do not contain any objects), some of the
clusters tend to be noisy as well. Figure 3(top) shows some
examples of the well aligned clusters extracted using the
above approach.

3.2. Generating Seed Segmentations
The discovered visually coherent and overlapping clus-

ters in the previous step are aligned due to sliding window
search, and they are aligned up to the level of a CHOG grid
cell. We can use this strong alignment to constrain the co-
segmentation problem and jointly segment the foreground
in all images, in the same cluster, using a graph-cut based
approach. Notice that objects can occur in different environ-
ments and have backgrounds with various conditions. The
benefits of segmenting all the images at once is that some in-
stances can be more easily segmented out (e.g., product im-
ages with clean, uniformly colored background), and those
segmentations can help in segmenting the hard images (e.g.,
images taken with a low-resolution camera, real-world im-
ages with multiple objects, overlaps and occlusions).

Mathematically, we cast the problem as a classical graph
cut problem to label every pixel in every image patch as
foreground or background. Suppose we have n image
patches I1, I2, . . . , In that belong to one cluster, each pixel-
feature xi,p (for the pixel p) should be labeled as either fore-
ground ci,p = 1 or background ci,p = 0, where p denotes
its location in image i. A labeling C of all the pixels cor-
responds to a segmentation. We define an energy function
over pixels and labels, and the optimal labeling is the one
with minimum energy.

The energy function E has four terms, leveraging the
instance-level cues and cluster-level cues in a coherent

way. The first term E(i, p;Ai) is the unary potential from
an appearance model specific to image i, and the second
term E(i, p;AS) is the unary potential from an appearance
model shared between all images in the cluster. An in-
stance based appearance model Ai consists of two Gaus-
sian mixture models (GMM), one for the foreground (used
when ci,p = 1) and one for the background (used when
ci,p = 0). Each component is a full-covariance Gaussian
over the RGB color space. We learn the foreground and
background appearance models using the pixels inside and
outside the bounding box generated from detections during
clustering step.

The third term E(i, p, q; ci,p, ci,q) is the pairwise poten-
tial where we define:

E(i, p, q; ci,p, ci,q) = δ(ci,p 6= ci,q)e
−βPE(xp,xq), (1)

as the pairwise compatibility function between labels of
pixels (p and q) based on the probability of having an in-
tervening contour (IC) between them [32]. Intuitively, this
term penalizes two pixels getting different labels if they do
not have an IC between them.

Finally, we want the segmentation masks across the clus-
ter to be aligned and consistent. In our approach, it is mod-
eled as a prior over the pixels: PM (cp|LS , p) where LS is
the average segmentation mask across the aligned cluster.
This denotes the prior probability that each pixel belongs to
foreground or background, given the pixel location and the
average cluster mask. In terms of energy, the fourth term
can be defined as:

E(i, p;LS) = − log(PM (cp|LS , p)). (2)
Since we do not know the segmentation prior (LS) and

appearance models before segmentation, we iterate between
the global optimal graph cut step for each image and re-
estimating the model parameters and location prior (by tak-
ing the mean) until the algorithm converges. Figure 3(bot-
tom) shows some examples of segmentations obtained for
the visually coherent clusters.

3.3. From Clusters to Visual Subcategories
In the last step, we used a standard co-segmentation ap-

proach to segment the object of interest in strongly aligned
clusters. While one can pool-in results from all such clus-
ters to compute final segmentations, this naive approach
will not work because internet data is noisy, especially for
images returned by search engines which are still mainly
dependent on text-based information retrieval. Therefore,
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Figure 4. Examples of visual subcategories obtained after merging clusters. We show few instances, the average images, learned Latent
SVM model and the segmentation prior for each subcategory.

some clusters still correspond to noise (e.g., a bike clus-
ter is created from car data). But more importantly, our
initial clustering operates in the high-precision, low-recall
regime to generate very coherent clusters. In this regime,
the clustering is strongly discriminative and focuses on us-
ing only part of the data. Therefore, as a next step we create
larger clusters which will increase the recall of bounding
boxes. To compute the segmentations, we exploit the top-
down segmentation priors from the previous step.

Specifically, we merge these aligned clusters and create
visual subcategories which are still visually homogeneous
but avoid over fitting and allow better recall. This clustering
step also helps to get rid of noise in the data as the smaller
and less consistent (noisy) clusters find it difficult to group
and create visual subcategories. One way to merge clusters
would be based on similarity of cluster members. However,
in our case, we represent each cluster in terms of the de-
tector and create the signature of the detector based on the



Table 1. Performance Evaluation on the Entire Internet Dataset

Car Horse Airplane

P J P J P J

[29] 83.38 63.36 83.69 53.89 86.14 55.62

eLDA 85.56 70.61 85.86 56.98 85.25 55.31
K-Means 82.11 54.35 87.02 52.99 86.08 51.18

NEIL subcategories 85.49 63.09 82.98 51.49 85.23 50.02

Ours 87.09 64.67 89.00 57.58 90.24 59.97

detector score on randomly sampled patches. Therefore, we
first create a detector-detection matrix S ∈ RN×M (where
N is the number of detectors and M is the number of de-
tections), with each entry Si,j filled by the detection score
of detector i firing on patch j. Each row i in this matrix can
be viewed as a signature of the detector. We then cluster the
detectors based on these detection signatures. After nor-
malization, we take the eigenvectors that correspond to the
largest eigenvalues of the normalized S and apply k-means
clustering to get the cluster index for detectors. Finally, we
learn a LSVM detector for each merged cluster.

3.4. Generating Segmentations From Subcategories
In the final step, we bring together the discriminative vi-

sual subcategory detectors, the top-down segmentation pri-
ors learned for each subcategory and the local image ev-
idence to create final segmentation per image. Given the
discovered visual subcategories we learn a LSVM detector
without the parts [9] for each subcategory. We use these
trained detectors to detect objects throughout the dataset.
Finally, we transfer the pooled segmentation mask for each
subcategory to initialize the grab-cut algorithm. The re-
sult of the grab-cut algorithm is the final segmentation of
each instance. The experiments demonstrate that this sim-
ple combination is quite powerful and leads to state-of-the-
art results on the challenging Internet Dataset [29].

4. Experimental Results
We now present experimental results to demonstrate the

effectiveness of our approach on both standard datasets and
Internet scale data. Traditional co-segmentation datasets
like [3] are too small and clean; however our algorithm is
specifically suited for large datasets (1000 images or more
per-class). Therefore, we use the new challenging Internet
dataset [29] for evaluation. This dataset consists of images
automatically downloaded from the Internet with query ex-
pansion. It has thousands of noisy images for three cat-
egories: airplane, horse, and car, with large variations on
pose, scale, view angle, etc. Human labeled segmentation
masks are also provided for quantitative evaluation.

Figure 5 shows some qualitative results. Notice how
our approach can extract nice segments even from cluttered
scenarios such as cars. Also, our approach can separately
detect multiple instances of the categories in the same im-
age. The last row in each category shows some failure cases

Table 2. Performance Evaluation on the subset of Internet Dataset
(100 images per class)

Car Horse Airplane

P J P J P J

[11] 58.70 37.15 63.84 30.16 49.25 15.36
[12] 59.20 35.15 64.22 29.53 47.48 11.72
[13] 68.85 0.04 75.12 6.43 80.20 7.90
[29] 85.38 64.42 82.81 51.65 88.04 55.81
Ours 87.65 64.86 86.16 33.39 90.25 40.33

which can be attributed to weird poses and rotations that are
not frequent in the dataset.

4.1. Quantitative Evaluation
We now quantitatively evaluate the performance of our

approach and compare against the algorithm of [29]. Note
that most co-segmentation algorithms cannot scale to ex-
tremely large datasets and hence we focus on comparing
against [29]. For our evaluation metric, we use Precision
(P) (the average number of pixels correctly labeled) and Jac-
card similarity (J) (average intersection-over-union for the
foreground objects). Table 1 shows the result on the entire
dataset. Our algorithm substantially outperforms the state-
of-the-art algorithm [29] on segmenting Internet images.

To understand the importance of each component, we
perform detailed ablative analysis. We use the following
one-step clustering baselines: (a) No Merging Step (eLDA):
Directly using eLDA results followed by pooling the seg-
mentation; (b) No eLDA Step (K-means): Directly us-
ing visual subcategories obtained using K-means; (c) No
eLDA Step (NEIL subcategories): Using NEIL based clus-
tering [5] to obtain visual subcategories. Our results indi-
cate that the two-step clustering is the key to obtain high
performance in joint segmentation. Finally, we also tried
using HOG instead of CHOG and it gave almost similar
performance (0.5% fall in P and no fall in J).

Our algorithm hinges upon the large dataset size and
therefore, as our final experiment, we want to observe the
behavior of our experiment as the amount of data decreases.
We would like a graceful degradation in this case. For this
we use a subset of 100 images used in [29]. This experiment
also allows us to compare against the other co-segmentation
approaches. Table 2 summarizes the performance compar-
ison. Our algorithm shows competitive results in terms of
precision. This indicates that our algorithm not only works
best with a large amount of data, but also degrades grace-
fully. We also outperform most existing approaches for co-
segmentation both in terms of Precision and Jaccard mea-
surement. Finally, we would like to point out that while our
approach improves the performance with increasing size of
data, [29] shows almost no improvement with dataset size.
This suggests that the quantitative performance of our ap-
proach is more scalable with respect to the dataset size.
NEIL Integration: We have integrated our object discov-
ery and segmentation algorithm in NEIL [5]. As of 14th



Figure 5. Qualitative results on discovering objects and their segments from noisy Internet images. We show results on three categories:
car, horse, and airplane. The last row in each result shows some failure cases.

April 2014, NEIL has automatically generated approxi-
mately 500K segmentations using web data. Figure 6 shows
some segmentation results from NEIL. All the data and
segmentation models are available on the NEIL website
(www.neil-kb.com).
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Figure 6. Qualitative results on discovering objects and their segments in NEIL [5]. The last column shows some failure cases.
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