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Abstract

In this paper we explore the bi-directional mapping be-
tween images and their sentence-based descriptions. Crit-
ical to our approach is a recurrent neural network that at-
tempts to dynamically build a visual representation of the
scene as a caption is being generated or read. The represen-
tation automatically learns to remember long-term visual
concepts. Our model is capable of both generating novel
captions given an image, and reconstructing visual features
given an image description. We evaluate our approach on
several tasks. These include sentence generation, sentence
retrieval and image retrieval. State-of-the-art results are
shown for the task of generating novel image descriptions.
When compared to human generated captions, our auto-
matically generated captions are equal to or preferred by
humans 21.0% of the time. Results are better than or com-
parable to state-of-the-art results on the image and sentence
retrieval tasks for methods using similar visual features.

1. Introduction
A good image description is often said to “paint a picture

in your mind’s eye.” The creation of a mental image may
play a significant role in sentence comprehension in humans
[18]. In fact, it is often this mental image that is remem-
bered long after the exact sentence is forgotten [34, 26].
As an illustrative example, Figure 1 shows how a mental
image may vary and increase in richness as a description
is read. Could computer vision algorithms that compre-
hend and generate image captions take advantage of similar
evolving visual representations?

Recently, several papers have explored learning joint fea-
ture spaces for images and their descriptions [16, 38, 20].
These approaches project image features and sentence fea-
tures into a common space, which may be used for image
search or for ranking image captions. Various approaches
were used to learn the projection, including Kernel Canon-
ical Correlation Analysis (KCCA) [16], recursive neural
networks [38], or deep neural networks [20]. While these
approaches project both semantics and visual features to a

Figure 1. Internal visual representations are important for both
generating and understanding semantic descriptions of scenes.
While visual representations may vary due to a description’s ambi-
guity, a good description conveys the salient aspects of the scene.

common embedding, they are not able to perform the in-
verse projection. That is, they cannot generate novel sen-
tences or visual depictions from the embedding.

In this paper, we propose a bi-directional representation
capable of generating both novel descriptions from images
and visual representations from descriptions. Critical to
both of these tasks is a novel representation that dynami-
cally captures the visual aspects of the scene that have al-
ready been described. That is, as a word is generated or
read the visual representation is updated to reflect the new
information contained in the word. We accomplish this us-
ing Recurrent Neural Networks (RNNs) [9, 29, 32]. One
long-standing problem of RNNs is their weakness in re-
membering concepts after a few iterations of recurrence.
For instance RNN language models often find difficultly in
learning long distance relations [3, 29] without specialized
gating units [15]. During sentence generation, our novel dy-
namically updated visual representation acts as a long-term
memory of the concepts that have already been mentioned.
This allows the network to automatically pick salient con-
cepts to convey that have yet to be spoken. As we demon-
strate, the same representation may be used to create a vi-
sual representation of a written description.

We demonstrate our method on numerous datasets.
These include the PASCAL sentence dataset [36], Flickr
8K [36], Flickr 30K [36], and the Microsoft COCO dataset
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[27, 4] containing over 400,000 sentences. When gener-
ating novel image descriptions, we demonstrate results as
measured by BLEU [35], METEOR [1] and CIDEr [40].
Qualitative results are shown for the generation of novel
image captions. We also evaluate the bi-directional ability
of our algorithm on both the image and sentence retrieval
tasks. Since this does not require the ability to generate
novel sentences, numerous previous papers have evaluated
on this task. We show results that are better or compara-
ble to previous state-of-the-art results using similar visual
features.

2. Related work
The task of building a visual memory lies at the heart

of two long-standing AI-hard problems: grounding natural
language symbols to the physical world and semantically
understanding the content of an image. Whereas learning
the mapping between image patches and single text labels
remains a popular topic in computer vision [23, 12, 13],
there is a growing interest in using entire sentence descrip-
tions together with pixels to learn joint embeddings [16,
38, 20, 14]. Viewing corresponding text and images as
correlated, KCCA [16] is a natural option to discover the
shared features spaces. However, given the highly non-
linear mapping between the two, finding a generic distance
metric based on shallow representations can be extremely
difficult. Recent papers seek better objective functions that
directly optimize the ranking [16], or directly adopts pre-
trained representations [38] to simplify the learning, or a
combination of the two [20, 14].

With a good distance metric, it is possible to perform
tasks like bi-directional image-sentence retrieval. However,
in many scenarios it is also desired to generate novel image
descriptions and to hallucinate a scene given a sentence de-
scription. Numerous papers have explored the area of gen-
erating novel image descriptions [11, 45, 24, 46, 33, 25, 21].
These papers use various approaches to generate text, such
as using pre-trained object detectors with template-based
sentence generation [45, 11, 24]. Retrieved sentences may
be combined to form novel descriptions [25]. Recently,
purely statistical models have been used to generate sen-
tences based on sampling [21] or recurrent neural networks
[28]. While [28] also uses a RNN, their model is signif-
icantly different from our model. Specifically their RNN
does not attempt to reconstruct the visual features, and is
more similar to the contextual RNN of [32]. For the synthe-
sizing of images from sentences, the recent paper by Zitnick
et al. [47] uses abstract clip art images to learn the visual
interpretation of sentences. Relation tuples are extracted
from the sentences and a conditional random field is used
to model the visual scene.

There are numerous papers using recurrent neural net-
works for language modeling [2, 29, 32, 21]. We build

most directly on top of [2, 29, 32] that use RNNs to
learn word context. Several models use other sources of
contextual information to help inform the language model
[32, 21]. Despite its success, RNNs still have difficulty cap-
turing long-range relationships in sequential modeling [3].
One solution is Long Short-Term Memory (LSTM) net-
works [15, 39, 21], which use “gates” to control gradient
back-propagation explicitly and allow for the learning of
long-term interactions. However, the main focus of this pa-
per is to show that the hidden layers learned by “translat-
ing” between multiple modalities can already discover rich
structures in the data and learn long distance relations in an
automatic, data-driven manner.

There are several contemporaneous papers [7, 10, 19, 22,
42] that explore the generation of novel image captions us-
ing LSTMs [7, 22, 42], RNNs [19] and traditional maxi-
mum entropy language models [10]. Unlike these models,
our model dynamically builds a visual representation of the
scene as a caption is being generated. As we demonstrate,
this can lead to improved results.

3. Approach
In this section we describe our approach using recurrent

neural networks. Our goals are twofold. First, we want to be
able to generate sentences given a set of visual observations
or features. Specifically, we want to compute the probabil-
ity of a word wt being generated at time t given the set of
previously generated words Wt−1 = w1, . . . , wt−1 and the
observed visual features V . Second, we want to enable the
capability of computing the likelihood of the visual features
V given a set of spoken or read words Wt for generating
visual representations of the scene or for performing image
search. To accomplish both of these tasks we introduce a
set of latent variables Ut−1 that encodes the visual interpre-
tation of the previously generated or read words Wt−1. As
we demonstrate later, the latent variables U play the critical
role of acting as a long-term visual memory of the words
that have been previously generated or read.

Using U , our goal is to compute P (wt|V,Wt−1, Ut−1)
and P (V |Wt−1, Ut−1). Combining these two likelihoods
together our global objective is to maximize,

P (wt, V |Wt−1, Ut−1)

= P (wt|V,Wt−1, Ut−1)P (V |Wt−1, Ut−1). (1)

That is, we want to maximize the likelihood of the word wt

and the observed visual features V given the previous words
and their visual interpretation. Note that in previous papers
[32, 28] the objective was only to compute P (wt|V,Wt−1)
and not P (V |Wt−1).

3.1. Model structure

Our recurrent neural network model structure builds on
the prior models proposed by [29, 32]. Mikolov [29] pro-



Figure 2. Illustration of our model. (a) shows the full model used for training. (b) and (c) show the parts of the model needed for generating
sentences from visual features and generating visual features from sentences respectively.

posed a RNN language model shown by the green boxes in
Figure 2(a). The word at time t is represented by a vector
wt using a “one hot” representation. That is, wt is the same
size as the word vocabulary with each entry having a value
of 0 or 1 depending on whether the word was used. The
output w̃t contains the likelihood of generating each word.
The recurrent hidden state s provides context based on the
previous words. However, s typically only models short-
range interactions due to the problem of vanishing gradi-
ents [3, 29]. This simple, yet effective language model was
shown to provide a useful continuous word embedding for
a variety of applications [30].

Following [29], Mikolov et al. [32] added an input layer
v to the RNN shown by the white box in Figure 2. This
layer may represent a variety of information, such as topic
models or parts of speech [32]. In our application, v rep-
resents the set of observed visual features. We assume the
visual features v are constant. These visual features help
inform the selection of words. For instance, if a cat was de-
tected, the word “cat” is more likely to be spoken. Note that
unlike [32], it is not necessary to directly connect v to w̃,
since v is static for our application. In [32] v represented
dynamic information such as parts of speech for which w̃
needed direct access. We also found that only connecting v
to half of the s units provided better results, since it allowed
different units to specialize on modeling either text or visual
features.

The main contribution of this paper is the addition of
the recurrent visual hidden layer u, blue boxes in Figure
2(a). The recurrent layer u attempts to reconstruct the vi-
sual features v from the previous words, i.e. ṽ ≈ v. The
visual hidden layer is also used by w̃t to help in predicting
the next word. That is, the network can compare its visual
memory u, which represents what it already said, with what

Figure 3. Illustration of the hidden units s and u activations
through time (vertical axis). Notice that the visual hidden units u
exhibit long-term memory through the temporal stability of some
units, where the hidden units s change significantly each time step.

it currently observes v to predict what to say next. At the
beginning of the sentence, u represents the prior probabil-
ity of the visual features. As more words are observed, the
visual features are updated to reflect the words’ visual inter-
pretation. For instance, if the word “sink” is generated, the
visual feature corresponding to sink should increase. Other
features that correspond to stove or refrigerator might in-
crease as well, since they are highly correlated with sink.

A critical property of the recurrent visual features u is
their ability to remember visual concepts over the long term.
The property arises from the model structure. Intuitively,
one may assume the visual features shouldn’t be estimated
until the sentence is finished. That is, u should not be used
to estimate v until wt generates the end of sentence token.
However, in our model we force u to estimate v at every
time step. This helps to learn long-term visual concepts.
For instance, if the word “cat” is generated, ut will increase
the likelihood of the visual feature corresponding to cat.
Assuming the “cat” visual feature in v is active, the net-
work will receive positive reinforcement to propagate u’s



memory of “cat” from one time instance to the next. Figure
3 shows an illustrative example of the hidden units s and
u. As can be observed, some visual hidden units u exhibit
longer temporal stability.

Note that the same network structure can predict visual
features from sentences or generate sentences from visual
features. For generating sentences (Fig. 2(b)), v is known
and ṽ may be ignored. For predicting visual features from
sentences (Fig. 2(c)), w is known, and s and v may be
ignored. This property arises from the fact that the word
units w separate the model into two halves for predicting
words or visual features respectively. Alternatively, if the
hidden units s were connected directly to u, this property
would be lost and the network would act as a normal auto-
encoder [41].

3.2. Implementation details

In this section we describe the details of our language
model and how we learn our network.

3.3. Language Model

Our language model typically has between 3,000 and
20,000 words. While each word may be predicted indepen-
dently, this approach is computationally expensive. Instead,
we adopted the idea of word classing [29] and factorized the
distribution into a product of two terms:

P (wt|·) = P (ct|·)× P (wt|ct, ·). (2)

P (wt|·) is the probability of the word, P (ct|·) is the proba-
bility of the class. The class label of the word is computed
in an unsupervised manner, grouping words of similar fre-
quencies together. Generally, this approach greatly acceler-
ates the learning process, with little loss of perplexity. The
predicted word likelihoods are computed using the standard
soft-max function. After each epoch, the perplexity is eval-
uated on a separate validation set and the learning reduced
(cut in half in our experiments) if perplexity does not de-
crease.

In order to further reduce the perplexity, we combine
the RNN model’s output with the output from a Maximum
Entropy language model [31], simultaneously learned from
the training corpus. For all experiments we fix how many
words to look back when predicting the next word used by
the Maximum Entropy model to three.

For any natural language processing task, pre-processing
is crucial to the final performance. For all the sentences, we
did the following three steps before feeding them into the
RNN model. 1) Use Stanford CoreNLP Tool to tokenize the
sentences. 2) Lower case all the letters. 3) Replace words
that occur less than 5 times with the word out-of-vocabulary
(OOV).

PASCAL
PPL BLEU METEOR

Midge [33] - 2.9 8.8
Baby Talk [24] - 0.5 9.7
Our Approach 25.3 9.8 16.0

Our Approach+FT 24.6 10.4 16.3
Our Approach+VGG 23.8 12.0 17.6

Human - 20.1 25.0

Table 1. Results for novel sentence generation for PASCAL 1K.
Results are measured using perplexity (PPL), BLEU (%) [35]
and METEOR (METR, %) [1]. Results for Midge [33] and
BabyTalk [24] are provided. Human agreement scores are shown
in the last row. See the text for more details.

3.4. Learning

For learning we use the Backpropagation Through Time
(BPTT) algorithm [43]. Specifically, the network is un-
rolled for several words and standard backpropagation is
applied. Note that we reset the model after an End-of-
Sentence (EOS) is encountered, so that prediction does not
cross sentence boundaries. As shown to be beneficial in
[29], we use online learning for the weights from the recur-
rent units to the output words. The weights for the rest of the
network use a once per sentence batch update. The activa-
tions for all units are computed using the sigmoid function
σ(z) = 1/(1 + exp(−z)) with clipping, except the word
predictions that use soft-max. We found that Rectified Lin-
ear Units (ReLUs) [23] with unbounded activations were
numerically unstable and commonly “blew up” when used
in recurrent networks.

We used the open source RNN code of [29] and the
Caffe framework [17] to implement our model. A big ad-
vantage of combining the two is that we can jointly learn
the word and image representations: the error from predict-
ing the words can be directly backpropagated to the image-
level features. However, deep convolution neural networks
require large amounts of data to train on, but the largest
sentence-image dataset has only 80K images [27]. There-
fore, instead of training from scratch, we choose to fine-
tune from the pre-trained 1000-class ImageNet models [6]
to avoid potential over-fitting. In all experiments, we use
the BVLC reference Net [17] or the Oxford VGG-Net [37].

4. Results

In this section we evaluate the effectiveness of our bi-
directional RNN model on multiple tasks. We begin by
describing the datasets used for training and testing, fol-
lowed by our baselines. Our first set of evaluations mea-
sure our model’s ability to generate novel descriptions of
images. Since our model is bi-directional, we evaluate its
performance on both the sentence retrieval and image re-
trieval tasks. For addition results please see [5].



Flickr 8K Flickr 30K MS COCO Val MS COCO Test
PPL BLEU METEOR PPL BLEU METEOR PPL BLEU METEOR BLEU METEOR CIDEr

RNN 17.5 4.5 10.3 23.0 6.3 10.7 16.9 4.7 9.8 - - -
RNN+IF 16.5 11.9 16.2 20.8 11.3 14.3 13.3 16.3 17.7 - - -

RNN+IF+FT 16.0 12.0 16.3 20.5 11.6 14.6 12.9 17.0 18.0 - - -
RNN+VGG 15.2 12.4 16.7 20.0 11.9 15.0 12.6 18.4 19.3 18.0 19.1 51.5

Our Approach 16.1 12.2 16.6 20.0 11.3 14.6 12.6 16.3 17.8 - - -
Our Approach+FT 15.8 12.4 16.7 19.5 11.6 14.7 12.0 16.8 18.1 16.5 18.0 44.8

Our Approach+VGG 15.1 13.1 16.9 19.1 12.0 15.2 11.6 18.8 19.6 18.4 19.5 53.1
Human - 20.6 25.5 - 18.9 22.9 - 19.2 24.1 21.7 25.2 85.4

Table 2. Results for novel sentence generation for Flickr 8K, FLickr 30K, MS COCO Validation and MS COCO Test. Results are measured
using perplexity (PPL), BLEU (%) [35], METEOR (%) [1] and CIDEr-D (%) [40]. Human agreement scores are shown in the last row.
See the text for more details.

4.1. Datasets

For evaluation we perform experiments on several stan-
dard datasets that are used for sentence generation and the
sentence-image retrieval task:

PASCAL 1K [36] The dataset contains a subset of im-
ages from the PASCAL VOC challenge. For each of the 20
categories, it has a random sample of 50 images with 5 de-
scriptions provided by Amazon’s Mechanical Turk (AMT).

Flickr 8K and 30K [36] These datasets consists of 8,000
and 31,783 images collected from Flickr respectively. Most
of the images depict humans participating in various activ-
ities. Each image is also paired with 5 sentences. These
datasets have a standard training, validation, and testing
splits.

MS COCO [4, 27] The Microsoft COCO dataset contains
82,783 training images and 40,504 validation images, each
with∼5 human generated descriptions. The images are col-
lected from Flickr by searching for common object cate-
gories, and typically contain multiple objects with signifi-
cant contextual information. We used the training set and
validation set to train our model in our experiments, and
uploaded our generated captions on the testing set (40,775
images) to the COCO server [4] for evaluation. Results us-
ing 5 reference captions are reported.

4.2. RNN Baselines

To gain insight into the various components of our
model, we compared our final model with three RNN base-
lines. For fair comparison, the random seed initialization
was fixed for all experiments. The the hidden layers s and
u sizes are fixed to 100. We tried increasing the number of
hidden units, but results did not improve. For small datasets,
more units can lead to overfitting.

RNN based Language Model (RNN) This is the basic
RNN language model developed by [29], which has no in-
put visual features.

RNN with Image Features (RNN+IF) This is an RNN
model with image features feeding into the hidden layer in-
spired by [32]. As described in Section 3, v is only con-
nected to s and not w̃. For the visual features v we used
the 4096D 7th layer output of the BVLC reference Net [17]
after ReLUs. Following [23], we average the five represen-
tations computed from cropping the 4 corners and center.
This network is pretrained on the ImageNet 1000-way clas-
sification task [6]. We experimented with other layers (5th
and 6th) but they do not perform as well.

RNN with Image Features Fine-Tuned (RNN+FT)
This model has the same architecture as RNN+IF, but the
error is back-propagated to the Convolution Neural Net-
work [13]. The CNN is initialized with the weights from
the BVLC reference net. The RNN is initialized with the
the pre-trained RNN language model. That is, the only ran-
domly initialized weights are the ones from visual features
v to hidden layers s. If the RNN is not pre-trained we found
the initial gradients to be too noisy for the CNN. If the
weights from v to hidden layers s are also pre-trained the
search space becomes too limited. Our current implemen-
tation takes∼5 seconds to learn a mini-batch of size 128 on
a Tesla K40 GPU. It is also crucial to keep track of the val-
idation error and avoid overfitting. We observed this fine-
tuning strategy is particularly helpful for MS COCO, but
does not give much performance gain on Flickr Datasets be-
fore it overfits. The Flickr datasets may not provide enough
training data to avoid overfitting.

RNN with Oxford VGG-Net Features (RNN+VGG) In
place of the BVLC reference Net features, we have also ex-
perimented with Oxford VGG-Net [37] features. Many re-
cent papers [28, 19] have reported better performance with



Figure 4. Qualitative results for sentence generation on the MS COCO dataset. Both a generated sentence (red) using (Our Approach +
FT) and a human generated caption (black) are shown. The last row shows several representative failure cases.

this representation. We again used the last-but-one layer af-
ter ReLU to feed into the RNN model.

4.3. Sentence generation

Our first set of experiments evaluate our model’s ability
to generate novel sentence descriptions of images. We ex-
periment on all the image-sentence datasets described previ-
ously and compare to the RNN baselines and other previous
papers [33, 24]. Since PASCAL 1K has a limited amount of
training data, we report results trained on MS COCO and
tested on PASCAL 1K. We use the standard train-test splits
for the Flickr 8K and 30K datasets. For MS COCO Valida-

tion we train and validate on the training set (∼37K/∼3K)
to compare variants of our approach. Finally, we report re-
sults on the MS COCO Test set using the MS COCO eval-
uation server [4]. To generate a sentence, we first sample
a target sentence length from the multinomial distribution
of lengths learned from the training data, then for this fixed
length we sample 100 random sentences, and use the one
with the lowest loss (negative likelihood, and in case of our
model, also reconstruction error) as output.

We choose four automatic metrics for evaluating the
quality of the generated sentences, perplexity, BLEU [35],
METEOR [1] and CIDEr [40] using the COCO caption



evaluation tool [4]. Perplexity measures the likelihood of
generating the testing sentence based on the number of bits
it would take to encode it. The lower the value the bet-
ter. BLEU and METEOR were originally designed for au-
tomatic machine translation where they rate the quality of a
translated sentences given several references sentences. We
can treat the sentence generation task as the “translation”
of images to sentences. For BLEU, we took the geometric
mean of the scores from 1-gram to 4-gram, and used the
ground truth length closest to the generated sentence to pe-
nalize brevity. For METEOR, we used the latest version.
CIDEr [40] is a metric developed specifically for evaluating
image captions. We use the variant of CIDEr called CIDEr-
D. For BLEU, METEOR and CIDEr higher scores are bet-
ter. For reference, we also report the consistency between
human annotators (using 1 sentence as query and the rest as
references for all but MS COCO Test)1.

Results for PASCAL 1K are shown in Table 1. Our
approach significantly improves over both Midge [33] and
BabyTalk [24] as measured by BLEU and METEOR. Our
approach generally provides more naturally descriptive sen-
tences, such as mentioning an image is black and white, or
a bus is a “double decker”. Midge’s descriptions are often
shorter with less detail and BabyTalk provides long, but of-
ten redundant descriptions. Results on Flickr 8K and Flickr
30K are also provided in Table 2.

On the MS COCO dataset that contains more images of
high complexity we provide BLEU, METEOR and CIDEr
scores. Surprisingly our BLEU and METEOR scores (18.5
& 19.4) are just slightly lower than the human score (21.7
& 25.2). Our CIDEr results (52.1) are significantly lower
than humans (85.4). The use of image features (RNN + IF)
significantly improves performance over using just an RNN
language model. Fine-tuning (FT) and our full approach
provide additional improvements for all datasets. Results
using the VGG-NET [37] (Our approach + VGG) show
some improvement. However, we believe with fine-tuning
even better results may be achieved. Qualitative results for
the MS COCO dataset are shown in Figure 4. For up to date
results for this paper and other contemporaneous papers on
the MS COCO test set please visit the MS COCO caption
evaluation leaderboard2.

It is known that automatic measures are only roughly
correlated with human judgment [8, 40, 16], so it is also
important to evaluate the generated sentences using hu-
man studies. We evaluated 1000 generated sentences on
MS COCO Validation by asking human subjects to judge
whether it had better, worse or same quality to a human
generated ground truth caption. 5 subjects were asked to

1We used 5 sentences as references for system evaluation, but leave out
4 sentences for human consistency. It is a bit unfair but the difference is
usually 1%∼ 2%.

2http://mscoco.org/dataset/#leaderboard

rate each image, and the majority vote was recorded. In
the case of a tie (2-2-1) the two winners each got half of a
vote. We find 5.1% of our captions (Our Approach + VGG)
are preferred to human captions, and 15.9% of the captions
were judged as being of equal quality to human captions.
This is an impressive result given we only used image-level
visual features for the complex images in MS COCO.

4.4. Bi-Directional Retrieval

Our RNN model is bi-directional. That is, it can gener-
ate image features from sentences and sentences from im-
age features. To evaluate its ability to do both, we measure
its performance on two retrieval tasks. We retrieve images
given a sentence description, and we retrieve a description
given an image. Since most previous methods are capable
of only the retrieval task, this also helps provide experimen-
tal comparison.

Following other methods, we adopted two protocols for
using multiple image descriptions. The first one is to treat
each of the ∼5 sentences individually. In this scenario, the
rank of the retrieved ground truth sentences are used for
evaluation. In the second case, we treat all the sentences
as a single annotation, and concatenate them together for
retrieval.

For each retrieval task we have two methods for ranking.
First, we may rank based on the likelihood of the sentence
given the image (T). Since shorter sentences naturally have
higher probability of being generated, we followed [28] and
normalized the probability by dividing it with the total prob-
ability summed over the entire retrieval set. Second, we
could rank based on the reconstruction error between the
image’s visual features v and their reconstructed visual fea-
tures ṽ (I). Due to better performance, we use the average
reconstruction error over all time steps rather than just the
error at the end of the sentence. In Tables 3, we report re-
trieval results on using the text likelihood term only (I) and
its combination with the visual feature reconstruction error
(T+I). All results use the visual features generated using the
VGG-NET [37].

The same evaluation metrics were adopted from previous
papers for both the tasks of sentence retrieval and image re-
trieval. They used R@K (K = 1, 5, 10) as the measurements,
which are the recall rates of the (first) ground truth sen-
tences (sentence retrieval task) or images (image retrieval
task). Higher R@K corresponds to better retrieval perfor-
mance. We also report the median/mean rank of the (first)
retrieved ground truth sentences or images (Med/Mean r).
Lower Med/Mean r implies better performance. For Flickr
8K and 30K several different evaluation methodologies
have been proposed. We report three scores for Flickr 8K
corresponding to the methodologies proposed by [38], [16]
and [28] respectively, and for Flickr 30K [12] and [28].

As shown in Tables 3 and 4, for Flickr 8K and 30K

http://mscoco.org/dataset/#leaderboard


Sentence Retrieval Image Retrieval
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Random Ranking 0.1 0.6 1.1 631 0.1 0.5 1.0 500
SDT-RNN [38] 4.5 18.0 28.6 32 6.1 18.5 29.0 29
DeViSE [12] 4.8 16.5 27.3 28 5.9 20.1 29.6 29
DeepFE [20] 12.6 32.9 44.0 14 9.7 29.6 42.5 15

DeepFE+DECAF [20] 5.9 19.2 27.3 34 5.2 17.6 26.5 32
RNN+VGG 8.9 25.7 38.7 20.5 6.5 17.3 28.4 25

Our Approach (T) 9.6 29.1 41.6 17 7.0 23.6 33.6 23
Our Approach (T+I) 9.9 29.2 42.4 16 7.3 24.6 36.0 20

[16] 8.3 21.6 30.3 34 7.6 20.7 30.1 38
RNN+VGG 7.7 23.0 37.2 21 6.8 24.0 33.9 23.5

Our Approach (T) 8.1 24.4 39.1 19 7.4 25.0 37.5 21
Our Approach (T+I) 8.6 25.9 40.1 17 7.6 24.9 37.8 20

M-RNN [28] 14.5 37.2 48.5 11 11.5 31.0 42.4 15
RNN+VGG 14.4 37.9 48.2 10 15.6 38.4 50.6 10

Our Approach (T) 15.2 39.8 49.3 8.5 16.4 40.9 54.8 9
Our Approach (T+I) 15.4 40.6 50.1 8 17.3 42.5 57.4 7

Table 3. Flickr 8K Retrieval Experiments. The protocols of [38], [16] and [28] are used respectively in each row. See text for details.

Sentence Retrieval Image Retrieval
R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Random Ranking 0.1 0.6 1.1 631 0.1 0.5 1.0 500
DeViSE [12] 4.5 18.1 29.2 26 6.7 21.9 32.7 25

DeepFE+FT [20] 16.4 40.2 54.7 8 10.3 31.4 44.5 13
RNN+VGG 10.2 26.9 36.7 22 7.6 21.3 31.4 27

Our Approach (T) 11.3 30.1 43.2 16 8.2 24.7 37.0 22
Our Approach (T+I) 11.9 32.9 45.1 14 8.4 25.7 36.8 21

M-RNN [28] 18.4 40.2 50.9 10 12.6 31.2 41.5 16
RNN+VGG 14.9 36.7 52.1 11 15.1 41.1 54.1 9

Our Approach (T) 15.8 42.0 57.4 9 17.7 44.9 57.2 7.5
Our Approach (T+I) 16.6 42.5 58.9 8 18.5 45.7 58.1 7

Table 4. Flickr 30K Retrieval Experiments. The protocols of [12] and [28] are used respectively in each row. See text for details.

our approach achieves comparable or better results than
all methods except for the recently proposed DeepFE [20].
However, DeepFE uses a different set of features based
on smaller image regions. If the similar features are used
(DeepFE+DECAF) as our approach, we achieve better re-
sults. We believe these contributions are complementary,
and by using better features our approach may also show
further improvement. In general ranking based on text and
visual features (T + I) outperforms just using text (T). Please
see [5] for retrieval results on PASCAL and MS COCO.

5. Discussion

Image captions describe both the objects in the image
and their relationships. An area of future work is to examine
the sequential exploration of an image and how it relates to
image descriptions. Many words correspond to spatial rela-
tions that our current model has difficultly in detecting. As
demonstrated by the recent paper of [20] better feature lo-
calization in the image can greatly improve the performance
of retrieval tasks and similar improvement might be seen in
the description generation task [10, 44].

In our paper we do not explore the use of LSTM models
that have shown the ability to learn long-term concepts [15].
In other contemporaneous papers [7, 42] impressive cap-
tioning results are achieved using LSTMs. In future work,
it would interesting to replace our RNNs with LSTM mod-
els to learn a bi-directional model similar to the one in this
paper.

In conclusion, we describe the first bi-directional model
capable of the generating both novel image descriptions and
visual features. Unlike many previous approaches using
RNNs, our model is capable of learning long-term inter-
actions. This arises from using a recurrent visual memory
that learns to reconstruct the visual features as new words
are read or generated. We demonstrate state-of-the-art re-
sults on the task of sentence generation, image retrieval and
sentence retrieval on numerous datasets.
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