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Abstract

We present a novel framework for iterative visual reason-
ing. Our framework goes beyond current recognition sys-
tems that lack the capability to reason beyond stack of con-
volutions. The framework consists of two core modules: a
local module that uses spatial memory [4] to store previous
beliefs with parallel updates; and a global graph-reasoning
module. Our graph module has three components: a) a
knowledge graph where we represent classes as nodes and
build edges to encode different types of semantic relation-
ships between them; b) a region graph of the current image
where regions in the image are nodes and spatial relation-
ships between these regions are edges; c) an assignment
graph that assigns regions to classes. Both the local mod-
ule and the global module roll-out iteratively and cross-feed
predictions to each other to refine estimates. The final pre-
dictions are made by combining the best of both modules
with an attention mechanism. We show strong performance
over plain ConvNets, e.g. achieving an 8.4% absolute im-
provement on ADE [55] measured by per-class average pre-
cision. Analysis also shows that the framework is resilient
to missing regions for reasoning.

1. Introduction
In recent years, we have made significant advances in

standard recognition tasks such as image classification [16],
detection [37] or segmentation [3]. Most of these gains are
a result of using feed-forward end-to-end learned ConvNet
models. Unlike humans where visual reasoning about the
space and semantics is crucial [1], our current visual sys-
tems lack any context reasoning beyond convolutions with
large receptive fields. Therefore, a critical question is how
do we incorporate both spatial and semantic reasoning as
we build next-generation vision systems.

Our goal is to build a system that can not only extract
and utilize hierarchy of convolutional features, but also im-
prove its estimates via spatial and semantic relationships.
But what are spatial and semantic relationships and how can
they be used to improve recognition? Take a look at Fig. 1.
An example of spatial reasoning (top-left) would be: if three
regions out of four in a line are “window”, then the fourth is
also likely to be “window”. An example of semantic reason-
ing (bottom-right) would be to recognize “school bus” even
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Figure 1. Current recognition systems lack the reasoning power
beyond convolutions with large receptive fields, whereas humans
can explore the rich space of spatial and semantic relationships for
reasoning: e.g. inferring the fourth “window” even with occlusion,
or the “person” who drives the “car”. To close this gap, we present
a generic framework that also uses relationships to iteratively rea-
son and build up estimates.

if we have seen few or no examples of it – just given exam-
ples of “bus” and knowing their connections. Finally, an ex-
ample of spatial-semantic reasoning could be: recognition
of a “car” on road should help in recognizing the “person”
inside “driving” the “car”.

A key recipe to reasoning with relationships is to it-
eratively build up estimates. Recently, there have been
efforts to incorporate such reasoning via top-down mod-
ules [38, 48] or using explicit memories [51, 32]. In the
case of top-down modules, high-level features which have
class-based information can be used in conjunction with
low-level features to improve recognition performance. An
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alternative architecture is to use explicit memory. For exam-
ple, Chen & Gupta [4] performs sequential object detection,
where a spatial memory is used to store previously detected
objects, leveraging the power of ConvNets for extracting
dense context patterns beneficial for follow-up detections.

However, there are two problems with these approaches:
a) both approaches use stack of convolutions to perform lo-
cal pixel-level reasoning [11], which can lack a global rea-
soning power that also allows regions farther away to di-
rectly communicate information; b) more importantly, both
approaches assume enough examples of relationships in
the training data – so that the model can learn them from
scratch, but as the relationships grow exponentially with in-
creasing number of classes, there is not always enough data.
A lot of semantic reasoning requires learning from few or
no examples [14]. Therefore, we need ways to exploit addi-
tional structured information for visual reasoning.

In this paper, we put forward a generic framework for
both spatial and semantic reasoning. Different from current
approaches that are just relying on convolutions, our frame-
work can also learn from structured information in the form
of knowledge bases [5, 56] for visual recognition. The core
of our algorithm consists of two modules: the local mod-
ule, based on spatial memory [4], performs pixel-level rea-
soning using ConvNets. We make major improvements on
efficiency by parallel memory updates. Additionally, we in-
troduce a global module for reasoning beyond local regions.
In the global module, reasoning is based on a graph struc-
ture. It has three components: a) a knowledge graph where
we represent classes as nodes and build edges to encode dif-
ferent types of semantic relationships; b) a region graph of
the current image where regions in the image are nodes and
spatial relationships between these regions are edges; c) an
assignment graph that assigns regions to classes. Taking
advantage of such a structure, we develop a reasoning mod-
ule specifically designed to pass information on this graph.
Both the local module and the global module roll-out itera-
tively and cross-feed predictions to each other in order to re-
fine estimates. Note that, local and global reasoning are not
isolated: a good image understanding is usually a compro-
mise between background knowledge learned a priori and
image-specific observations. Therefore, our full pipeline
joins force of the two modules by an attention [3] mech-
anism allowing the model to rely on the most relevant fea-
tures when making the final predictions.

We show strong performance over plain ConvNets using
our framework. For example, we can achieve 8.4% absolute
improvements on ADE [55] measured by per-class average
precision, where by simply making the network deeper can
only help ∼1%.

2. Related Work
Visual Knowledge Base. Whereas past five years in com-
puter vision will probably be remembered as the success-
ful resurgence of neural networks, acquiring visual knowl-
edge at a large scale – the simplest form being labeled in-
stances of objects [39, 30], scenes [55], relationships [25]

etc.– deserves at least half the credit, since ConvNets hinge
on large datasets [44]. Apart from providing labels us-
ing crowd-sourcing, attempts have also been made to ac-
cumulate structured knowledge (e.g. relationships [5], n-
grams [10]) automatically from the web. However, these
works fixate on building knowledge bases rather than us-
ing knowledge for reasoning. Our framework, while being
more general, is along the line of research that applies vi-
sual knowledge base to end tasks, such as affordances [56],
image classification [32], or question answering [49].
Context Modeling. Modeling context, or the interplay be-
tween scenes, objects and parts is one of the central prob-
lems in computer vision. While various previous work (e.g.
scene-level reasoning [46], attributes [13, 36], structured
prediction [24, 9, 47], relationship graph [21, 31, 52]) has
approached this problem from different angles, the break-
through comes from the idea of feature learning with Con-
vNets [16]. On the surface, such models hardly use any
explicit context module for reasoning, but it is generally ac-
cepted that ConvNets are extremely effective in aggregating
local pixel-to-level context through its ever-growing recep-
tive fields [54]. Even the most recent developments such as
top-down module [50, 29, 43], pairwise module [40], itera-
tive feedback [48, 34, 2], attention [53], and memory [51, 4]
are motivated to leverage such power and depend on vari-
ants of convolutions for reasoning. Our work takes an im-
portant next step beyond those approaches in that it also in-
corporates learning from structured visual knowledge bases
directly to reason with spatial and semantic relationships.
Relational Reasoning. The earliest form of reasoning in ar-
tificial intelligence dates back to symbolic approaches [33],
where relations between abstract symbols are defined by
the language of mathematics and logic, and reasoning takes
place by deduction, abduction [18], etc. However, symbols
need to be grounded [15] before such systems are practi-
cally useful. Modern approaches, such as path ranking algo-
rithm [26], rely on statistical learning to extract useful pat-
terns to perform relational reasoning on structured knowl-
edge bases. As an active research area, there are recent
works also applying neural networks to the graph structured
data [42, 17, 27, 23, 35, 7, 32], or attempting to regularize
the output of networks with relationships [8] and knowl-
edge bases [20]. However, we believe for visual data, rea-
soning should be both local and global: discarding the two-
dimensional image structure is neither efficient nor effective
for tasks that involve regions.

3. Reasoning Framework
In this section we build up our reasoning framework. Be-

sides plain predictions p0 from a ConvNet, it consists of
two core modules that reason to predict. The first one, local
module, uses a spatial memory to store previous beliefs with
parallel updates, and still falls within the regime of convo-
lution based reasoning (Sec. 3.1). Beyond convolutions, we
present our key contribution – a global module that reasons
directly between regions and classes represented as nodes
in a graph (Sec. 3.2). Both modules build up estimation it-
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Figure 2. Overview of our reasoning framework. Besides a plain ConvNet that gives predictions, the framework has two modules to
perform reasoning: a local one (Sec. 3.1) that uses spatial memory Si, and reasons with another ConvNet C; and a global one (Sec. 3.2) that
treats regions and classes as nodes in a graph and reasons by passing information among them. Both modules receive combined high-level
and mid-level features, and roll-out iteratively (Sec. 3.3) while cross-feeding beliefs. The final prediction f is produced by combining all
the predictions fi with attentions ai (Sec. 3.4).

eratively (Sec. 3.3), with beliefs cross-fed to each other. Fi-
nally taking advantage of both local and global, we combine
predictions from all iterations with an attention mechanism
(Sec. 3.4) and train the model with sample re-weighting
(Sec. 3.5) that focuses on hard examples (See Fig. 2).

3.1. Reasoning with Convolutions

Our first building block, the local module, is inspired
from [4]. At a high level, the idea is to use a spatial mem-
ory S to store previously detected objects at the very loca-
tion they have been found. S is a tensor with three dimen-
sions. The first two, height H and width W , correspond to
the reduced size (1/16) of the image. The third one, depth
D (=512), makes each cell of the memory c a vector that
stores potentially useful information at that location.
S is updated with both high-level and mid-level features.

For high-level, information regarding the estimated class la-
bel is stored. However, just knowing the class may not be
ideal – more details about the shape, pose etc. can also be
useful for other objects. For example, it would be nice to
know the pose of a “person” playing tennis to recognize the
“racket”. In this paper, we use the logits f before soft-max
activation, in conjunction with feature maps from a bottom
convolutional layer h to feed-in the memory.

Given an image region r to update, we first crop the cor-
responding features from the bottom layer, and resize it to
a predefined square (7×7) with bi-linear interpolation as h.
Since high-level feature f is a vector covering the entire
region, we append it to all the 49 locations. Two 1×1 con-
volutions are used to fuse the information [4] and form our
input features fr for r. The same region in the memory S
is also cropped and resized to 7×7, denoted as sr. After
this alignment, we use a convolutional gated recurrent unit
(GRU) [6] to write the memory:

s′r = u ◦ sr + (1− u) ◦ σ(Wffr +Ws(z ◦ sr) + b), (1)

where s′r is the updated memory for r, u is update gate, z
is reset gate, Wf , Ws and b are convolutional weights and
bias, and ◦ is entry-wise product. σ(·) is an activation func-
tion. After the update, s′r is placed back to S with another

crop and resize operation1.
Parallel Updates. Previous work [4] made sequential up-
dates to memory. However, sequential inference is ineffi-
cient and GPU-intensive – limiting it to only give ten out-
puts per image [4]. In this paper we propose to update
the regions in parallel as an approximation. In overlapping
cases, a cell can be covered multiple times from different
regions. When placing the regions back to S, we also cal-
culate a weight matrix Γ where each entry γr,c∈[0, 1] keeps
track of how much a region r has contributed to a memory
cell c: 1 meaning the cell is fully covered by the region, 0
meaning not covered. The final values of the updated cell is
the weighted average of all regions.

The actual reasoning module, a ConvNet C of three 3×3
convolutions and two 4096-D fully-connected layers, takes
S as the input, and builds connections within the local win-
dow of its receptive fields to perform prediction. Since the
two-dimensional image structure and the location informa-
tion is preserved in S, such an architecture is particularly
useful for relationships with spatial reasoning.

3.2. Beyond Convolutions
Our second module goes beyond local regions and con-

volutions for global reasoning. Here the meaning of global
is two-fold. First is spatial, that is, we want to let the regions
farther away to directly communicate information with each
other, not confined by the receptive fields of the reasoning
module C. Second is semantic, meaning we want to take
advantage of visual knowledge bases, which can provide re-
lationships between classes that are globally true (i.e. com-
monsense) across images. To achieve both types of reason-
ing, we build a graph G = (N , E), where N and E denote
node sets and edge sets, respectively. Two types of nodes
are defined in N : region nodes Nr for R regions, and class
nodes Nc for C classes.

As for E , three groups of edges are defined between
nodes. First for Nr, a spatial graph is used to encode spa-
tial relationships between regions (Er→r). Multiple types

1Different from previous work [4] that introduces an inverse operation
to put the region back, we note that crop and resize itself with proper ex-
trapolation can simply meet this requirement.
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Figure 3. Illustration of directly passing information on a graph
with multiple edge types. Here four nodes are linked with two
edge types. Each node is represented as an input feature vectormi

(aggregated as M ). Weight matrix Wj is learned for edge type j
to transform inputs. Then adjacency matrix Aj is applied to pass
information to linked nodes. Finally, output G is generated by
accumulating all edge types and apply activation function.

of edges are designed to characterize the relative loca-
tions. We begin with basic relationships such as “left/right”,
“top/bottom” and we define edge weights by measuring the
pixel-level distances between the two. Note that we do not
use the raw distance x directly, but instead normalizing it to
[0, 1] with a kernel κ(x)= exp(−x/∆) (where ∆=50 is the
bandwidth), with the intuition that closer regions are more
correlated. The edge weights are then used directly in the
adjacency matrix of the graph. Additionally, we include
edges to encode the coverage patterns (e.g. intersection over
union, IoU [12]), which can be especially helpful when two
regions overlap.

A second group of edges lie between regions and classes,
where the assignment for a region to a class takes place.
Such edges shoulder the responsibility of propagating be-
liefs from region to class (er→c) or backwards from class
to region (ec→r). Rather than only linking to the most con-
fident class, we choose full soft-max score p to define the
edge weights of connections to all classes. The hope that
it can deliver more information and thus is more robust to
false assignments.

Semantic relationships from knowledge bases are used to
construct the third group of edges between classes (Ec→c).
Again, multiple types of edges can be included here. Clas-
sical examples are “is-kind-of” (e.g. between “cake” and
“food”), “is-part-of” (e.g. between “wheel” and “car”),
“similarity” (e.g. between “leopard” and “cheetah”), many
of which are universally true and are thus regarded as com-
monsense knowledge for humans. Such commonsense can
be either manually listed [39] or automatically collected [5].
Interestingly, even relationships beyond these (e.g. actions,
prepositions) can help recognition [32]. Take “person ride
bike” as an example, which is apparantly more of an image-
specific relationship. However, given less confident pre-
dictions of “person” and “bike”, knowing the relationship
“ride” along with the spatial configurations of the two can
also help prune other spurious explanations. To study both

cases, we experimented with two knowledge graphs in this
paper: one created in-house with mostly commonsense
edges, and the other also includes more types of relation-
ships accumulated at a large-scale. For the actual graphs
used in our experiments, please see Sec. 4.1 for more de-
tails.

Now we are ready to describe the graph-based reasoning
module R. As the input to our graph, we use Mr∈RR×D

to denote the features from all the region nodes Nr com-
bined, where D (=512) is the number of feature chan-
nels. For each class node nc, we choose off-the-shelf
word vectors [22] as a convenient representation, denoted
as Mc∈RC×D. We then extend previous works [42, 35]
and pass messages directly on G (See Fig. 3). Note that,
because our end-goal is to recognize regions better, all the
class nodes should only be used as intermediate “hops” for
better region representations. With this insight, we design
two reasoning paths to learn the output features Gr: a spa-
tial path on which only region nodes are involved:

Gspatial
r =

∑
e∈Er→r

AeMrWe, (2)

where Ae∈Rr×r is the adjacency matrix of edge type e,
We∈Rd×d is weight (bias is ignored for simplicity). The
second reasoning path is a semantic one through class
nodes:

Gsemantic
c =

∑
e∈Ec→c

Aeσ(Aer→c
MrWer→c

+McWc)We,

(3)
where we first map regions to classes through Aer→c and
Wer→c

, combine the intermediate features with class fea-
tures Mc, and again aggregate features from multiple types
of edges between classes. Finally, the output for regions Gr

are computed by merging these two paths:

Gr = σ(Gspatial
r + σ(Aec→r

Gsemantic
c Wec→r

)), (4)

which first propagates semantic information back to re-
gions, and then applies non-linear activation (See Fig. 4).

Just like convolution filters, the above-described paths
can also be stacked, where the output Gr can go through
another set of graph operations – allowing the framework to
perform joint spatial-semantic reasoning with deeper fea-
tures. We use three stacks of operations with residual con-
nections [16] inR, before the output is fed to predict.

3.3. Iterative Reasoning

A key ingredient of reasoning is to iteratively build up es-
timates. But how does information pass from one iteration
to another? Our answer is explicit memory, which stores
all the history from previous iterations. The local module
uses spatial memory S , and the global module uses another
memory M but without spatial structures. At iteration i,
Si is followed by convolutional reasoning module C to gen-
erate new predictions f li for each region. Similarly, global



spatial path
ℇ"→" 𝐺"

%&'()'*

semantic path
ℇ+→+𝑀+

𝑀"

𝑒"→+ 𝑒+→"

𝐺"%./'0()+

inputs

𝐺"

outputs

Figure 4. Two reasoning paths used in our global reasoning module
R. Taking the region and class inputs Mr and Mc, the spatial
path directly passes information in the region graph with region-to-
region edges Er→r , whereas the semantic path first assigns regions
to classes with er→c, passes the information on to other classes
with class-to-class edges Ec→c, and then propagates back. Final
outputs are combined to generate output region features Gr .

module also gives new predictions fgi from R. These new
predictions as high-level features can then be used to get
the updated memories Si+1 andMi+1. The new memories
will lead to another round of updated fi+1s and the iteration
goes on.

While one can do local and global reasoning in isola-
tion, both the modules work best in conjunction. Therefore,
for our full pipeline we want to join force of both modules
when generating the predictions. To this end, we introduce
cross-feed connections. After reasoning, both the local and
global features are then concatenated together to update the
memories Si+1 andMi+1 using GRU. In this way, spatial
memory can benefit from global knowledge of spatial and
semantic relationships, and graph can get a better sense of
the local region layouts.

3.4. Attention
Inspired from the recent work on attention [3], we make

another modification at the model output. Specifically, in-
stead of only generating scores f , the model also has to
produce an “attention” value a that denotes the relative
confidence of the current prediction compared to the ones
from other iterations or modules. Then the fused output
is a weighted version of all predictions using attentions.
Mathematically, if the model roll-outs I times, and outputs
N=2I+1 (including I local, I global and 1 from plain Con-
vNet) predictions fn, using attentions an, the final output f
is calculated as:

f =
∑
n

wnfn, where wn =
exp(−an)∑
n′ exp(−an′)

. (5)

Note again that here fn is the logits before soft-max, which
is then activated to produce pn. The introduction of atten-
tion allows the model to intelligently choose feasible pre-
dictions from different modules and iterations.

3.5. Training
Finally, the overall framework is trained end-to-end, with

a total loss function consists of: a) plain ConvNet loss L0;
b) local module loss Ll

i; c) global module loss Lg
i ; and d)

the final prediction loss with attentions Lf .
Since we want our reasoning modules to focus more on

the harder examples, we propose to simply re-weight the
examples in the loss, based on predictions from previous
iterations. Formally, for region r at iteration i≥1, the cross-
entropy loss for both modules is computed as:

Li(r) =
max(1.− pi−1(r), β)∑
r′ max(1.− pi−1(r′), β)

log(pi(r)), (6)

where pi(r) is the soft-max output of the ground-truth class,
and β∈[0, 1] controls the entropy of the weight distribution:
when β=1, it is uniform distribution; and when β=0, en-
tropy is minimized. In our experiments, β is set to 0.5.
pi−1(r) is used as features without back-propagation. For
both local and global, p0(r) is the output from the plain
ConvNet.

4. Experiments
In this section we evaluate the effectiveness of our frame-

work. We begin with our experimental setups, which in-
cludes the datasets to work with (Sec. 4.1), the task to
evaluate on (Sec. 4.2) and details of our implementation
(Sec. 4.3). We discuss our results and analyze them in
Sec. 4.4 and Sec. 4.5 respectively.

4.1. Datasets and Graphs
Datasets are biased [45]. For context reasoning we

would naturally like to have scene-focused datasets [55] as
opposed to object-focused ones [39]. To showcase the ca-
pabilities of our system, we need densely labeled dataset
with a large number of classes. Finally, one benefit of us-
ing knowledge graph is to transfer across classes, therefore
a dataset with long-tail distribution is an ideal test-bed. Sat-
isfying all these constraints, ADE [55] and Visual Genome
(VG) [25] where regions are densely labeled in open vocab-
ulary are the main picks of our study.

For ADE, we use the publicly released training set
(20, 210) images for training, and split the validation set
(2, 000 images) into val-1k and test-1k with 1, 000
images each. The original raw names are used due to a
more detailed categorization [55]. We filter out classes with
less than five instances, which leaves us with 1, 484 classes.
With the help of parts annotations in the dataset, a common-
sense knowledge graph is created with five types of edges
between classes: a) “is-part-of” (e.g. “leg” and “chair”); b)
“is-kind-of” (e.g. “jacket” and “clothes”); c) “plural-form”
(e.g. “tree” and “trees”); d) “horizontal-symmetry” (e.g.
“left-arm” and “right-arm”); e) “similarity” (e.g. “handle”
and “knob”). Notice that the first four types are directed
edges, hence we also include their inverted versions.

For VG, the latest release (v1.4) is used. We split the
entire set of 108, 077 images into 100K, 4, 077 and 4K
as train, val and test set. Similar pre-processing is
done on VG, except that we use synsets [39] instead of raw
names due to less consistent labels from multiple annota-
tors. 3, 993 classes are used. For knowledge graph between



Table 1. Main results on ADE test-1k and VG test. AP is av-
erage precision, AC is classification accuracy. Superscripts show
the improvement ∇ over the baseline.

% Method per-instance per-class
AP∇ AC∇ AP∇ AC∇

A
D

E

Baseline 67.0 67.0 40.1 33.2
w/ ResNet-101 68.2 68.3 40.8 34.4
w/ 800-input 68.2 68.2 41.0 34.3
Ensemble 68.7 68.8 42.9 35.3

Ours-Local 71.6+4.6 71.7+4.7 47.9+7.8 38.7+5.7

Ours-Global 69.8+2.8 69.8+2.8 44.5+4.4 36.8+3.6

Ours-Final 72.6+5.6 72.6+5.6 48.5+8.4 39.5+6.3

V
G

Baseline 49.1 49.6 16.9 12.1
w/ ResNet-101 50.3 50.8 18.0 13.0
w/ 800-input 49.5 50.0 17.0 12.2
w/ Ensemble 50.2 50.7 17.7 12.3

Ours-Local 51.4+2.3 51.9+2.3 18.8+1.9 12.8+0.7

Ours-Global 50.9+1.8 51.5+1.9 18.3+1.4 12.6+0.5

Ours-Final 51.7+2.6 52.2+2.6 19.1+2.2 12.9+0.8

classes, we take advantage of the relationship annotations
in the set, and select the top 10 most frequent relationships
to automatically construct edges beyond commonsense re-
lationships constructed for ADE. For each type of relation-
ships, the edge weights are normalized so that each row of
the adjacency matrix is summed-up to one. While this ap-
proach results in a noisier graph, it also allows us to demon-
strate that our approach is scalable and robust to noise.

Finally, we also show experiments on COCO [30].
However, since it is detection oriented – has only 80
classes picked to be mutually-exclusive, and covers less
percentage of labeled pixels, we only report results a)
without the knowledge graph and b) without a test split
(trainval35k [4] for training and minival for eval-
uation). This setup is for analysis purposes only.

4.2. Task and Evaluation
We evaluate our system on the task of region classifica-

tion, where the goal is to assign labels to designated regions
denoted by rectangular bounding boxes. For both training
and testing, we use provided ground-truth locations. We
picked this task for three reasons. The first one is on eval-
uation. As the number of classes increases in the vocabu-
lary, missing labels are inevitable, which is especially severe
for object parts (e.g. “rim”, “arm”) and related classes (e.g.
“shoes” vs. “sneakers”) where external knowledge is valu-
able. If there are missing labels, fair evaluation becomes
much more difficult since accuracy becomes impossible to
evaluate – cannot tell if a prediction is wrong, or the label
itself is missing. Interestingly, such an issue also happens to
other research areas (e.g. recommendation systems [41] and
link prediction [28]). Borrowing ideas from them, a prac-
tical solution is to evaluate only on what we already know
– in our case ground-truth regions. Second, although re-
gion classification is a simplified version of object detection
and semantic segmentation, it maintains a richer set of la-

bels, especially including “stuff” classes like “road”, “sky”,
and object instances. Modeling “stuff-object” and instance-
level relationships is a crucial capability which would be
missed in a pure detection/segmentation setting. Finally as
our experiment will show (Sec. 4.5), while object detectors
can be used off-the-shelf, the additional manually defined
parameters and components (e.g. overlapping threshold for
a region to be positive/negative, predefined scale/aspect ra-
tio sets of anchors [37]) in its pipeline pose limitations on
how much context can benefit. For example, after non-
maximal suppression (NMS), highly overlapping objects
(e.g. “window” and “shutter”) will be suppressed, and iron-
ically this is exactly where context reasoning could have
helped. On the other hand, by feeding fixed regions di-
rectly for end-to-end learning, we can at least factorize the
recognition error from the localization one [19], and get a
clean focus on how context can help discriminating confus-
ing classes.

Since ADE is a segmentation dataset, we convert seg-
mentation masks to bounding boxes. For object classes (e.g.
“person”), each instance is created a separate box. Part (e.g.
“head”) and part-of-part (e.g. “nose”) are also included. For
VG and COCO, boxes are directly used.

For evaluation, we use classification accuracy (AC) and
average precision (AP) [12]. Note that since all the regions
are fixed with known labels, there is no need to set a re-
gion overlap threshold for AP. Results can be aggregated in
two ways: the first way (“per-class”) computes metrics sep-
arately for each class in the set, and take the mean; since the
final scores are all taken from a calibrated soft-max output, a
second way (“per-instance”) that computes metrics simulta-
neously for all classes. Intuitively, “per-class” assigns more
weights to instances from rare classes.

4.3. Implementation Details
A simplified version of tf-faster-rcnn2 is used to imple-

ment our baseline for region classification, with region pro-
posal branch and bounding box regression components re-
moved. Unless otherwise noted, ResNet-50 [16] pre-trained
on ImageNet [39] is used as our backbone image classifier,
and images are enlarged to shorter size 600 pixels during
both training and testing. Specifically, full-image shared
convolutional feature maps are computed till the last conv4
layer. Then the ground-truth boxes are used as regions-of-
interest to compute region-specific features (crop and resize
to 7×7 without max-pool). All layers of conv5 and up are
then adopted to obtain the final feature for the baseline pre-
diction p0. Batch normalization parameters are fixed.

For the local module, we use the last conv4 layer as our
mid-level features to feed the spatial memory S. For the
global module, mid-level features are the final conv5 (2048-
D) layer after avg-pool. Both features are fused with the
logits before soft-max f , and then fed into the memory
cells. Word vectors from fastText [22] are used to repre-
sent each class, which extracts sub-word information and

2https://github.com/endernewton/tf-faster-rcnn

https://github.com/endernewton/tf-faster-rcnn


Figure 5. Qualitative examples from ADE test-1k (best if zoomed-in). For regions highlighted in blue, the predictions from baseline
and our model are compared. Other regions are also listed to provide the context. For example, the “right-leg” is less confused with
“left-leg” after reasoning (top-left); the “mouse” on the “desk” is predicted despite low resolution (top-third); and “detergent-dispenser”
is recognized given the context of “washing-machine” (top-right). At bottom-right we show a failure case where context does not help
“remote-control”, probably because it has never appeared on the “night-table” before and no semantic relationship is there to help.

generalizes well to out-of-vocabulary words. ReLU is se-
lected as the activation function. We roll-out the reasoning
modules 3 times and concurrently update all regions at each
iteration, as more iterations do not offer more help.

We apply stochastic gradient descent with momentum to
optimize all the models, and use the validation set to tune
hyper-parameters. Our final setups are: 5e−4 as the initial
learning rate, reduced once (0.1×) during fine-tuning; 1e−4

as weight decay; 0.9 as momentum. For ADE, we train
320K iterations and reduce learning rate at 280K. For VG
and COCO the numbers are 640K/500K and 560K/320K,
respectively3. We use a single image per step, and the only
data augmentation technique used during training is left-
right flipping4. No augmentation is used in testing.

4.4. Main Results
Quantitative results on ADE test-1k and VG test

are shown in Tab. 1. Besides plain ConvNet p0, we also
add three more baselines. First, we use ResNet-101 as the
backbone to see the performance can benefit from deeper
networks. Second, we increase the input image size with a
shorter side 800 pixels, which is shown helpful especially
for small objects in context [29]. Finally, to check whether
our performance gain is a result of more parameters, we
include model ensemble as the third baseline where the pre-
diction of two separate baseline models are averaged.

As can be seen, our reasoning modules are performing
much better than all the baselines on ADE. The local mod-
ule alone can increase per-class AP by 7.8 absolute points.
Although the global module alone is not as effective (4.4%

3Training longer still reduces cross-entropy, but drops both AP and AC.
4The labels for class pairs like “left-hand” and “right-hand” are

swapped for flipped images.

improvement), the performance gain it offers is comple-
mentary to the local module, and combining both modules
we arrive at an AP of 48.5% compared to the baseline AP
40.1%. On the other hand, deeper network and larger in-
put size can only help ∼1%, less than model ensembles.
Additionally, our models achieve higher per-class metric
gains than per-instance ones, indicating that rare classes get
helped more – a nice property for learning from few exam-
ples. Some qualitative results are listed in Fig. 5.

We also report the speed for future reference. On Titan
Xp, the final model on ADE trains at 0.344s per iteration,
compared to the baseline ResNet-50 at 0.163s and ResNet-
101 at 0.209s. For testing, our model takes 0.165s, whereas
ResNet-50 0.136s, ResNet-101 0.156s. We believe the ad-
ditional cost is minimal with regard to the extra accuracy.

We see a similar but less significant trend on VG. This
can potentially be a result of noisier labels – for ADE (and
COCO shown later), the per-instance AP and AC values are
within 0.1%, intuitively suggesting that higher scores usu-
ally correspond to correct classifications. However, on VG
the difference is at∼0.5%, meaning more of the highly con-
fident predictions are not classified right, which are likely
caused by missing ground-truths.

4.5. Analysis
Our analysis is divided into two major parts. In the first

part, we conduct thorough ablative analysis on the frame-
work we have built. Due to space limitation, we only report
results on ADE here at Tab. 2, for more analysis on VG,
please check our supplementary material.

As can be seen, re-weighting hard examples with Eq. 6
helps around 0.5% regardless of reasoning modules. Spa-
tial memory S is critical in the local module – if replaced



Table 2. Ablative analysis on ADE test-1k. In the first row of
each block we repeat Local, Global and Final results from Tab. 1.
Others see Sec. 4.5 for details.

% Analysis per-instance per-class
AP AC AP AC

L
oc

al

Ours-Local 71.6 71.7 47.9 38.7
w/o re-weight 71.3 71.3 46.7 37.9
w/o C 70.9 71.0 46.1 37.5
w/o S 67.6 67.6 42.1 34.4

G
lo

ba
l

Ours-Global 69.8 69.8 44.5 36.8
w/o re-weight 69.2 69.2 43.8 36.7
w/o spatial 67.8 67.8 41.5 35.0
w/o semantic 69.1 69.2 43.9 35.9
w/o R 67.1 67.2 41.5 34.5
w/o M & R 67.1 67.1 41.0 34.0

Fi
na

l

Ours-Final 72.6 72.6 48.5 39.5
w/o re-weight 72.1 72.2 47.3 38.6
w/o cross-feed 72.2 72.2 47.6 39.0
2 iterations 71.9 72.0 48.1 39.0

by feeding last conv4 layer directly the performance drops
almost to baseline. Local context aggregator C is less in-
fluential for ADE since the regions including background
are densely labeled. A different story takes place at the
global module: removing the reasoning module R steeply
drops performance, whereas further removing memoryM
does not hurt much. Finally, for our full pipeline, removing
cross-feeding and dropping the number of iterations both
result in worse performance.
Missing Regions. So far we have shown results when all
the regions are present. Next, we want to analyze if our
framework is robust to missing regions: if some percent-
age of regions are not used for reasoning. This will be a
common scenario if we use our framework in the detection
setting – the underlying region proposal network [37] may
itself miss some regions. We perform this set of experi-
ments on COCO, since its regions are object-focused.

We test three variations. In the first variation, the
same region classification pipeline is applied as-is. In the
other two, we drop regions. While we could have done
it randomly, we simulate the real-world scenario by using
region proposals from faster R-CNN [37] (1190K/900K,
minival detection mAP 32.4%) for testing, where 300
region proposals after NMS are applied to filter the ground-
truth regions (max IoU>δ). Evaluation is only done on the
remaining regions. Here we choose not to use region pro-
posals directly, since the model has seen ground truth re-
gions only. We test two variations: a) “pre”, where the re-
gions are filtered before inference, i.e. only the remaining
ground-truths are fed for reasoning; “post”, where regions
are filtered after inference. Note that for the baseline, “pre”
and “post” makes no difference performance-wise.

The results are summarized in Tab. 3. Interestingly, de-
spite lacking a knowledge graph, our global module works
better than the local module with the region graph alone,

Table 3. Results with missing regions when region proposals are
used. COCO minival is used since it is more detection oriented.
pre filters regions before inference, and post filters after inference.

Method pre post
per-instance per-class

AP∇ AC∇ AP∇ AC∇

Baseline 83.2 83.2 83.7 75.9
Ours-Local 84.9+1.7 84.9+1.7 85.8+2.1 77.6+1.7

Ours-Global 85.6+2.4 85.7+2.5 86.9+3.2 78.2+2.3

Ours-Final 86.0+2.8 86.0+2.8 87.4+3.7 79.0+3.1

Baseline - - 87.0 87.0 87.7 80.2
Ours-Final 3 88.6+1.6 88.6+1.6 89.9+2.2 82.6+2.4

Ours-Final 3 88.8+1.8 88.8+1.8 90.1+2.4 82.5+2.3

Figure 6. Trends of recall and per-class AP when varying IoU
threshold δ from 0 to .9 to drop regions. See text for details.

likely due to its power that allows direct region-to-region
communication even for farther-away pairs. Combining the
two, we report 3.7% absolute advantage on per-class AP
over the baseline even with all classes being objects – no
“stuff” classes involved.

In Fig. 6, we vary δ from 0 to .9: with 0 keeping all re-
gions and 0.9 dropping the most. As the trend shows, while
the reasoning module suffers when regions are dropped, it is
quiet resilient and the performance degradation is smooth.
For example (listed in Tab. 3), with an IoU threshold δ of
0.5 that recalls 78.1% of the ground truth boxes, we still
outperform the baseline by 2.4% in the “post” setting, and
2.2% in “pre” where not all regions can be fed for reasoning.
The lower gap implies a) region proposals are usually cor-
responding to easy examples where less context is needed,
and b) context reasoning frameworks like ours benefit from
more known regions. At δ=.8 the recall (30.5%) is so small
that it cannot afford much reasoning, and at δ=.9 (recall
3.9%), reasoning even hurts the performance.

5. Conclusion
We presented a novel framework for iterative visual rea-

soning. Beyond convolutions, it uses a graph to encode spa-
tial and semantic relationships between regions and classes
and passes message on the graph. We show strong perfor-
mance over plain ConvNets, e.g. achieving an 8.4% abso-
lute gain on ADE and 3.7% on COCO. Analysis also shows
that our reasoning framework is resilient to missing regions
caused by current region proposal approaches.
Acknowledgements: This work was supported in part by
ONR MURI N000141612007. XC would also like to thank
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