
Pacific Graphics 2012
C. Bregler, P. Sander, and M. Wimmer
(Guest Editors)

Volume 31 (2012), Number 7

Semi-supervised Mesh Segmentation and Labeling

Jiajun Lv, Xinlei Chen, Jin Huang†, Hujun Bao

State Key Lab of CAD & CG, Zhejiang University

Abstract

Recently, approaches have been put forward that focus on the recognition of mesh semantic meanings. These
methods usually need prior knowledge learned from training dataset, but when the size of the training dataset is
small, or the meshes are too complex, the segmentation performance will be greatly effected. This paper introduces
an approach to the semantic mesh segmentation and labeling which incorporates knowledge imparted by both
segmented, labeled meshes, and unsegmented, unlabeled meshes. A Conditional Random Fields (CRF) based
objective function measuring the consistency of labels and faces, labels of neighbouring faces is proposed. To
implant the information from the unlabeled meshes, we add an unlabeled conditional entropy into the objective
function. With the entropy, the objective function is not convex and hard to optimize, so we modify the Virtual
Evidence Boosting (VEB) to solve the semi-supervised problem efficiently. Our approach yields better results than
those methods which only use limited labeled meshes, especially when many unlabeled meshes exist. The approach
reduces the overall system cost as well as the human labelling cost required during training. We also show that
combining knowledge from labeled and unlabeled meshes outperforms using either type of meshes alone.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computer Graphics—
Computational Geometry and Object Modeling

1. Introduction

Consistent semantic segmentation and labelling of multiple
3D shapes are fundamental to shape understanding and pro-
cessing. Many tasks in shape processing, 3D modeling, an-
imation and texturing of 3D meshes benefit from automatic
segmentation of shapes into components that appear natu-
ral [CGF09, CKGK11].

Classical approaches to mesh segmentation base their
computation purely on geometric structure of individual
shapes, in particular geometric boundaries, of the meshes.
A variety of geometric features have been investigated, but
no single feature or collection of features is known to pro-
duce high quality results for all classes of shapes [CGF09].
The underlying difficulty is that a perceptually natural seg-
mentation of a shape is often the result of prior familiarity
with other similar shapes and their function. The surface ge-
ometry of an individual shape may lack sufficient cues to
identify all parts that would be perceived as meaningful to a
human observer [VKTS∗11].

† Corresponding author: hj@cad.zju.edu.cn

Figure 1: Illustrates with more unlabeled meshes, the seg-
mentation results will improve. The first column is one of 3
labeled training meshes, the second is the segmentation re-
sults with no unlabeled meshes, the third is with 7 unlabeled
meshes and the last is with 17 unlabeled meshes.

Recently, data-driven semantic segmentation approaches
and unsupervised co-segmentation approaches are proposed
which can segment and label parts in various 3D meshes
and the results are comparable to human work. But the data-
driven methods need prior knowledge learned from training
dataset and the size of the training dataset has a great impact
on the segmentation performance [KHS10]. Even though
the unsupervised joint segmentation approaches do not need
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Figure 2: The segmentation and labeling results of our semi-supervised mesh segmentation algorithm on the whole Princeton
Segmentation Benchmark [CGF09]. The training process is performed using other 3 labeled meshes with all the unlabeled
meshes in the same set.

training data, their results are, not surprisingly, inferior to the
supervised ones.

In complex segmentation tasks, obtaining a large amount
of labeled data for training is not practical. Yet, large un-
labeled datasets are often easy to obtain, making semi-
supervised learning methods appealing. Besides, consider-
ing the great complexity and variance of meshes, even hun-
dreds of labeled examples can only sparsely cover the pa-
rameter space, which makes semi-supervised learning even
more attractive [Zhu07, YNX∗12]. Additionally, the human
labeled training datasets are also likely to be inconsistent
or mislabeled and for the inconsistently labeled training
datasets, where semi-supervised method is more robust than
supervised method [GB04]. Based on these observations, we
present a semi-supervised mesh segmentation approach that
is not only accurate, robust but also scalable, efficient, and
easy to train and deploy. In addition to be computationally
efficient, our proposed method reduces the amount of label-
ing required during training, which makes it appealing for
use in the segmentation and labeling of 3D meshes.

We evaluate the proposed approach on the complete
Princeton shape benchmark [CGF09] and compare it to the
supervised approach of [KHS10]. Our results demonstrate
that making use of unlabeled information produces better
segmentation than supervised approaches. Figure 1 illus-
trates the power of incorparating more unlabeled meshes.
The contributions of our work are:

• Semi-supervised mesh segmentation model using Condi-

tional Random Fields (CRF) [LMP01, MC07] - a model
uses unlabeled mesh information, considering mesh face
features and mesh topology.

• Efficient training method for the semi-supervised mesh
segmentation model using Virtual Evidence Boosting
(VEB) [Obe07, LCFK07] - a method combines logit-
boost [FHT00] and belief propagation [MWJ99].

• Experimental results demonstrate the advantages of our
model, which outperforms other mesh segmentation mod-
els and is robust to mislabeling of training data.

2. Related Work

As an important research topic, shape segmentation has at-
tracted much attention in years. We only review the most
related work here, and a comprehensive survey can be found
in [Sha08]. A large number of approaches have been de-
veloped for decomposing a single shape into parts [Sha08,
GF08]. Such approaches suffer when the individual shape
does not provide sufficient geometric cues to distinguish its
meaningful parts, or when strong extraneous geometric fea-
tures are present. In a recent evaluation, no segmentation al-
gorithm performed well across all tested datasets [CGF09].

To overcome the limitations inherent in single-shape, lim-
ited features analysis, researchers have turned to data-driven
techniques that utilize large feature information from multi-
ple shapes in order to segment a given shape. Data-driven
techniques are well-established in image processing: top-
performing image segmentation algorithms all utilize man-
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ually segmented training sets [SWRC09]. This supervised
approach to segmentation has recently been extended to 3D
shapes by [KHS10], who demonstrates significant improve-
ment over previous segmentation algorithms. [BLVD11]
further introduces this learning approach into identifying
boundary edges. However, supervised approaches require a
substantial number of manually segmented training shapes.
When the number of training shapes decreases, their perfor-
mance drops dramatically.

Without enough labeled meshes, unsupervised ap-
proaches are proposed such as [HKG11], in which linear
programming is used to jointly segment the meshes. Oana
Sidi has another unsupervised segmentation approaches
which use descriptor-space spectral clustering [SvKK∗11].
However, without prior knowledge of label information,
their segmentation results are naturally inferior to the super-
vised one, especially when the meshes are complicated.

Our approach uses information from both labeled meshes
and unlabeled ones, overcoming the difficulties of requiring
a large amount of labeled meshes and the disadvantage of in-
ability to use unlabeled meshes. The method generates better
results than both supervised and unsupervised method, and
is more robust to inconsistently labeled training set which
may result from human mislabeling or label missing.

3. Overview

In this section, we present an overview of our semi-
supervised approach, full details of the algorithmic compo-
nents are covered in subsequent sections. We begin by first
giving a formal definition of the problem:

Definition 1 Semi-supervised mesh segmentation problem is
to learn a mesh segmentation model from a collection of la-
beled meshes Dl and unlabeled meshes Du with unary fea-
tures X and pairwise features ω, which can be fomulated into
the optimization framework:

max
Θ

f (Dl ,Du,X ,ω;Θ), (1)

where f (·) is some objective function, and Θ is the model
parameter.

Per-mesh CRF model. First, much recent work [KHS10,
VKTS∗11] shows that the objective function f (·) of a good
mesh segmentation approach should contain two parts, one
of which measuring the consistency between the label and
its face, and another measuring the consistency between the
label and its neighborhood. Therefore, Conditional Random
Fields (CRF) is well fit to fulfill this job.

Incorporation of unlabeled mesh information. To in-
corporate the unlabeled data information into the mesh seg-
mentation problem, we add an entropy term to the original
objective function [JWL∗06]. As a result, the putative la-
beling for the unlabeled data can in turn reinforce with the

supervised labels, making the results more accurate and ro-
bust.

Learning methods. Training complex CRF models with
many features is slow, and exact inference is often in-
tractable. In mesh segmentation, we face thousands of faces,
and each is represented by hundreds of features. Addition-
ally, the added entropy term makes the objective function
non-convex and thus more hard to optimize. To efficiently
solve the problem, we adopted the Virtual Evidence Boost-
ing (VEB) [LCFK07] to train, which performs feature se-
lection and parameter estimation in a unified and efficient
manner.

4. Semi-supervised CRF Model Description

This section describes the semi-supervised CRF model we
used. First, we would introduce the per-mesh CRF model,
then add an entropy term to incorporate the unlabeled mesh
information into the model.

4.1. Per-Mesh CRF Model

Conditional Random Fields [LMP01,MC07] is a kind of dis-
criminative undirected probabilistic graphical model widely
used for segmenting and labeling data based on conditional
approach. It has some special advantages. Both the unary
term F(X ,Y ) and the pairwise term G(Y,ω) in CRF are
learned from the input data rather than predefined, where X ,
Y and ω are the features, labelings and pairwise features of
the whole mesh.

A per-mesh CRF model was proposed by [KHS10]. How-
ever, their model cannot directly lead to an optimization
problem in the semi-supervised framework. To overcome
this, we introduce another per-mesh CRF model whose
whole objective function is learned from function templates
and can be optimized in a semi-supervised manner. Our
model also captures the information from both the features
of a face, and from its neighborhood. Our goal is to la-
bel each mesh face s ∈ S with a label ys ∈ J, where J is a
predefined set of possible labels, such as “body”, “head”,
or “wing”. The unary features xs for each face s, is the
same as [KHS10], including curvature features, PCA fea-
tures, shape diameter, distance from medial surface, average
geodesic distance, shape context and so on. Pairwise features
ω used in our approach are the dihedral angles of face pairs
(the smaller the angle, the more likely the labels of the face
pair have little relationship), and potentially more topologi-
cal features can be included. We compute all mesh labels by
maximizing the conditional probability function:

P(Y |X ,ω) =
exp(F(X ,Y )+G(Y,ω))

Z(X ,Y,ω)
, (2)

where F(X ,Y ) = ∑ fm ∑
n
s=1 fm(xs,ys), G(Y,ω) =

∑gn ∑s1,s2
gn(ys1 ,ys2), s1 and s2 are neighbouring faces

and Z(X ,Y,ω) is a normalization factor.

c© 2012 The Author(s)
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Unary Energy Term. The unary energy term F(X ,Y ) =
∑ fm ∑

n
s=1 fm(xs,ys) measures the consistency between the

features and the labels. In each iteration, parameters of tem-
plate functions fψ are learned by virtual evidence boosting
and the estimated function is added to F(X ,Y ).

Pairwise Energy Term. The pairwise energy term
G(Y,ω) = ∑gn ∑s1,s2

gn(ys1 ,ys2) measures the consistencies
of the labels in certain geometry circumstances, which
means evaluating the cost of label combinations that the
neighboring vertex takes. The main role of the pairwise term
is to improve boundaries between segments and to prevent
incompatible segments from being adjacent.

4.2. Semi-supervised Objective Function

To make full use of the available training data, we propose
a semi-supervised mesh segmentation approach that exploits
the data information in the form of entropy regularization.

Assume we have a set of labeled meshes Dl =
{(X (1),Y (1)), . . . ,(X (N),Y (N))}, and unlabeled meshes Du =

{(X (N+1),Y (N+1)), . . . ,(X (M),Y (M))}, where X (i) is the face
features of mesh i, Y (i) is the face labels of mesh i. Specifi-
cally, for a semi-supervised CRF, we maximize the objective
function:

f (·)=
N

∑
i=1

logP(Y (i)|X (i))+γ

M

∑
i=N+1

∑
Y

P(Y |X (i)) logP(Y |X (i))

(3)
The first term is the penalized log conditional likelihood of
the labeled meshes of the CRF model, and the second term is
the negative conditional entropy of the CRF on the unlabeled
meshes, ∑Y means the sum over all combinations of mesh
face labels, which is intolerable in mesh segmentation. Here,
γ is a tradeoff parameter that controls the influence of the
unlabeled data, in our experiments, an γ ∈ [0.01,0.05] yields
desired results.

The motivation is that minimizing conditional entropy
over unlabeled data encourages the algorithm to find putative
labelings for the unlabeled data that are mutually reinforcing
with the supervised labels; that is, greater certainty on the
putative labelings coincides with greater conditional like-
lihood on the supervised labels, and vice versa [JWL∗06].
More motivations can be found in [GB04].

5. Learning Parameters

We slightly modified the Virtual Evidence Boosting
(VEB) [LCFK07] to train CRF. It runs two procedures itera-
tively. The first is Belief Propagation (BP) [MWJ99], which
transfers information between labels to get a unified belief
for the marginal distribution of a set of variables in the graph.
Then second part is the normal Logitboost [FHT00]. Since
after BP every node shares the same information, the infor-
mation propagated from the neighborhood is inexplicitly in-
cluded.

From a learning perspactive, this approach includes three
steps. First, knowledge is learned from a set of both labeled
and unlabeled meshes in the form of per-label classifiers and
pairwise label relationship. Next, given a query mesh to be
segmented and labeled, we apply the classifiers to assign
a probabilistic label to each mesh face. Finally, the prob-
abilistic labels are used synergistically with label pairwise
relationship in belief propagation to yield the resulting mesh
segments.

5.1. Belief Propagation

The VEB considers two types of evidences for a node ys.
The first type is the feature xs in the training data. The sec-
ond type is the message from neighboring nodes n(ys); the
message is obtained by running belief propagation with the
current functions F(X ,Y ),G(Y,ω).

The likelihood of neighbouring faces taking different la-
bels increases when the angle of the face normals is large,
so we modify BP to incorporate this information in the pair-
wise term in the form of dividing G(ys1 ,ys2) by ρ(2−cosθ),
where θ is the angle of neighbour face normals and we use
ρ∈ [1,2]. In BP, messages are distinguished before and after

multiplying the compatibility potentials e
G(ys2 ,ys1 )

ρ(2−cos θ) . We denote
these messages as λs2→s1(ys2) and µs2→s1(ys1), respectively.
These messages are distributed normally at first and com-
puted iteratively [Pea88].

λs2→s1(ys2) = αeF(ys2 ,xs2 ) ∏
s3∈n(ys2 ),s3 6=s1

µs3→s2(ys2), (4)

and

µs2→s1(ys1) = β∑
ys2

e
G(ys2 ,ys1 )

ρ(2−cos θ) λs2→s1(ys2), (5)

where α and β are used for normalization. As can be seen,
λ−messages contain information about the distribution of
the sending node ys2 , and µ−messages contain information
about which values the recipient node ys1 should prefer. So
the µ−messages correspond exactly to the messages sent in
regular belief propagation.

Equivalently, from belief propagation we have

p(ys1 |X) = ηeF(ys1 ,xs1 ) ∏
s2∈n(ys1 )

µs2→s1(ys1), (6)

where η is used for normalization.

5.2. LogitBoost

LogitBoost is a boosting algorithm that has many appealing
properties: it performs automatic feature selection and can
handle large numbers of input features for multiclass classi-
fication, it has a fast sequential learning algorithm, and it is
suitable for combination with other parts in the model.

c© 2012 The Author(s)
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This section introduces the LogitBoost we modified to in-
corporate the unlabeled meshes. For the unary energy term,
there are J functions Fj for each label, and the probabil-
ity of vertex xs taking label j ∈ J is computed as p j(xs) =

eFj (xs)

∑
J
k=1 eFk (xs)

. For the pairwise term, there are also J func-

tions G j, and if vertex xs takes label j, the consistency
to the neighbouring label j∗ is computed as G j( j∗) =

∑
J
k=1 α j,kθ(k = j∗).

Before the update, the first derivation ∇s and second
derivation Ws for each face s of each label should be com-
puted. Then, the boosting weights, ws, and working re-
sponses, zs, are calculated as ws = −Ws, ds = ∇s, zs =
∇s
ws

. For the labeled faces, ws = p j(xs)(1− p j(xs)), ds =
1<y∗s >= j − p j(xs), where p j(xs) is the probability of face
s taking label j after belief propagation. For the case of un-
labeled data, we derived the expressions for ds and ws as
follows:

ds = αPj(xs)(logPj(xs)−∑
j

P( j|xs,ys) logP( j|xs,ys)) (7)

ws = αPj(xs)(1− logPj(xs)+(1−2logPj(xs))

(∑
j

P( j|xs,ys) logP( j|xs,ys)− logPj(xs))) (8)

The updating algorithm is described below [Obe07].

The algorithm description of unary energy term update
is in Algorithm 1. Unary Energy Term Update Algorithm
training data, likelihood from last belief propagation update
function fm, gainc initialize gainc = 0 Fj, j ∈ J node index
s ∈ S compute ds, ws, zs compute best update function fm, j

accumulate likelihood gain gainc ← gainc + ∑s,ds 6=0
d2

s
ws
−

ws( fm, j(xs)− ds
ws
)2

For the unary energy term fm, j, we add the function from
the function template

fm, j(x
k) = θ1δ(xk ≥ h)+θ2δ(xk < h) (9)

to Fj iteratively, where xk means the k-th feature.

The best parameter satisfies [LCFK07]:

θ1 =
∑

N
s=1 wszsδ(xk

s ≥ h)

∑
N
s=1 wsδ(xk

s ≥ h)
(10)

θ2 =
∑

N
s=1 wszsδ(xk

s < h)

∑
N
s=1 wsδ(xk

s < h)
(11)

The algorithm description of pairwise energy term up-
date is in Algorithm 2. Pairwise Energy Term Update Al-
gorithm training data, belief propagation message update
function gn, gainc initialize gainc = 0 G j , j ∈ J node in-
dex s ∈ S compute ds, ws, zs label j∗ ∈ J compute best up-
date function gn, j( j∗) accumulate likelihood gain gainc ←
gainc +∑s,ds 6=0

d2
s

ws
−ws(gn, j( j∗)− ds

ws
)2

For the pairwise term gn, j( j∗), the function templated is:

G j( j∗) =
J

∑
k=1

α j,kθ(k = j∗). (12)

The parameters of the update function can be calculated as

α j, j∗ =
∑

n
s=1 wszsλs∗→s(ys∗ = j∗)

∑
n
s=1 wsλs∗→s(ys∗ = j∗)

(13)

In each iteration, we pick a function from fm and gn with
the most likelihood gain and add it to F(X ,Y ) or G(Y,ω).

6. Experimental Results

In this section, we evaluate our semi-supervised segmen-
tation approach and present qualitative and quantitative re-
sults. We make comparisons to both the supervised method
of [KHS10] and the baseline supervised method of our semi-
supervised approach. The robustness of our method to incon-
sistently labeled training meshes, such as human mislabeling
and label missing, is also illustrated. Finally, we analyze the
complexity of our algorithm.

Dataset Sup [KHS10] Sup Semi(7) Semi(17)
Airplane 91.2 91.1 94.2 95.9

Ant 97.4 93.8 97.1 98.7
Armadillo 83.7 84.1 86.6 87.3
Bearing 61.3 76.2 79.2 82.4

Bird 76.3 81.6 82.1 77.5
Bust 52.2 55.6 58.2 63.4
Chair 97.1 97.6 97.9 98.3
Cup 96.3 91.4 93.8 95.3
Fish 94.1 92.3 94.8 95.7

FourLeg 82.0 83.8 87.2 88.1
Glasses 94.4 93.5 96.3 97.1
Hand 74.9 91.0 95.4 94.7

Human 83.2 84.1 86.7 87.3
Mech 82.4 81.2 81.9 85.6

Octopus 98.3 98.8 98.6 98.7
Plier 92.2 82.1 94.7 94.2
Table 99.0 98.3 93.2 89.1
Teddy 93.1 79.1 92.1 97.9
Vase 74.3 77.4 79.8 81.2

Average 85.4 86.0 88.9 89.9

Table 1: The first method is the supervised approach
in [KHS10], The second is our supervised method, the third
is our semi-supervised method with 7 unlabeled meshes and
the last is our semi-supervised method with 17 unlabeled
meshes(3 labeled meshes)

6.1. Segmenting Princeton Segmentation Benchmark

We applied our semi-supervised approach to the same
benchmark of [KHS10], processed Princeton Segmentation
Benchmark [CGF09]. In this section, all the results shown
are done with 3 labeled training meshes (the first 3 meshes

c© 2012 The Author(s)
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Figure 3: Experimental results of the semi-supervised mesh segmentation method. For each kind of dataset, the left column
three are the labeled training dataset, and the right column three are the segmented meshes.

or the 3 meshes with the highest segment accuracy under the
premise that all labels are included). Figure 2 contains the re-
sults of all datasets in the benchmark and Figure 3 contains
the training sets and the corresponding segment results.

To quantitatively analysis the results, we use accu-
racy to measure the resulting performance, as [KHS10]
and [HKG11] showed that different measuring criteria yield
consistent results. The accuracy is calculated as the percent-
age of the mesh surface area that is correctly labeled: Acc =
(∑i ai

(I(yi ,y
∗
i )+1)
2 )

∑i ai
, where ai is the area of face i, yi is the ground-

truth label for face i, y∗i = argmaxP(y|xi), P(y|xi) is the last
output of the belief propagation for face i. I(y,y∗) = 1 when
y = y∗, I(y,y∗) =−1 when y 6= y∗.

Table 1 shows the results of the whole benchmark. To
determine the effect of the number of unlabeled training
meshes in our semi-supervised approach, we respectively
use 7 unlabeled meshes and 17 unlabeled meshes, and the
right three columns of Table 1 use same labeled training
sets and features. The two supervised approaches have sim-
ilar performance. For the semi-supervised approach with
17 unlabeled meshes and 3 labeled meshes, the accuracy
is 89.9%, which is approximately 4.5% better than the su-
pervised approaches. Table 2 demonstrates that with more
labeled training meshes, the improvement over supervised
learning scheme will decline, especially when the original
accuracy is already high. However, it is still better compared
to the supervised methods.

The experimental results demonstrate that with the infor-
mation from unlabeled meshes, the segmentation and label-
ing accuracy tends to improve. Also, Table 1 shows that the
improvement slows down as the unlabeled training set be-
comes larger.

Dataset Sup(3) Semi(317) Sup(6) Semi(614)
Airplane 91.1 95.9 94.6 96.4

Ant 93.8 98.7 97.9 98.8
Bearing 76.2 82.4 78.3 87.3

Fish 92.3 95.7 93.6 95.1
Hand 91 94.7 93.1 94.9
Vase 77.4 81.2 78.4 82.3

Dataset Sup(9) Semi(911) Sup(12) Semi(128)
Airplane 95.3 96.3 95.3 96.1

Ant 98.3 98.4 98 98.8
Bearing 84.7 88.1 84.9 88.3

Fish 94.1 95.6 94.7 95.5
Hand 94 95.1 93.9 94.8
Vase 79.7 84.6 82.2 86.1

Table 2: The comparative results of our supervised method
and semi-supervised method with different number of la-
beled meshes and all left unlabeled meshes.

6.2. Robustness to Inconsistently Labeled Data

The supervised mesh segmentation method requires consis-
tently labeled meshes, otherwise the results may be unde-
sirable. However, due to the likelihood that different people

c© 2012 The Author(s)
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Figure 4: Comparative results on the human mislabeled
training set. The first three are the labeled training meshes,
but the first one is mislabeled. The next three are the results
of the baseline supervised method, they are greatly affected
by the mislabeled meshes, the last three are the results of our
semi-supervised method, which are less influenced.

may have different segmentation boundaries to the same ob-
ject, noise of the labeled set is inevitable. On the other hand,
since the semi-supervised learning scheme gains informa-
tion from large sets of unlabeled features to de-noise, it is
more robust to noisy supervision [Zhu07].

Intuitively, the entropy term acts as a regularizer, which
exploits information from the unlabeled data, and can thus
avoid the model from over-fitting to the training data, with
possibly mislabeled outliers. Because the regularizer essen-
tially serves as a prior of the model, the parameters learned
from our framework are more robust to the purely super-
vised version, which solely learns model information from
the data, and is thus totally data-dependent [Bis06]. Addi-
tionally, the entropy term actually measures the class over-
lap [GB04], which stresses the usefulness of incorporating
the unlabeled data where the labeling is indeed ambiguous.

Our result Figure 4 shows that with the inconsistent la-
beled data, the accuracy of supervised learning method drops
quickly while the semi-supervised learning method is rela-
tively robust. We also tested on some dataset to randomly
choose 5% faces of the labeled training dataset and changed
its label to another random label, simulating the process of
label missing and label error. Our experimental results show
that the semi-supervised method is relatively robust to such
interference, the results are shown in Table 3.

Dataset Sup Semi(17) Dataset Sup Semi(17)
Airplane 87.6 94.5 FourLeg 78.4 81.4

Ant 93.4 97.8 Hand 81.2 89.5
Bearing 54.1 75.3 Human 55.0 76.7
Chair 83.2 90.4 Table 76.7 92.6
Fish 85.7 90.2 Teddy 87.2 91.1

Table 3: The comparative results of our supervised method
and semi-supervised method, with 5% random noise added,
which can test the robustness of the algorithms.

6.3. Complexity Analysis

In our approach, for the training process, the cost of each
belief propagation is Θ((Dl +Du)NJ), and the cost of each
boosting iteration is Θ((Dl + Du)NJΩ). And for the la-
beling process, the application of boosting classifier costs
Θ(NJΩselected) and the belief propagation costs Θ((Dl +
Du)NJ). Dl is the number of labeled meshes, Du is the num-
ber of unlabeled meshes, N is the size of each mesh, J is
the number of labels, and Ω is the dimension of features.
The number of training iterations needed in [KHS10] is al-
most three times of our method, and the cost of each iter-
ation is relatively the same. The space cost of this method
is Θ(NJ2

Ωselected), because of the feature selection step,
we have Ωselected � Ω. Therefore, the feature selection be-
comes very useful when faced with high dimensional data,
particularly if they include a large number of redundant fea-
tures.

The computational cost of this algorithm is almost the
same to the baseline supervised version. Even though the
algorithm converges faster, the unsupervised method always
need more training data to be processed. The experimental
results are performed on I7 2600 3.4GHz processor with
12G RAM. For each training process, we need to process
20 meshes, each has about 20-30K faces. This process takes
about 7 hours, but when the model is learned, applying it to
new meshes costs only a few minutes per mesh.

7. Discussion and Future Works

The method proposed in this paper is the first approach
in mesh segmentation that uses both labeled and unlabeled
meshes. Although it achieves some success, the result is
still data-dependent. The parameters we used are manu-
ally adjusted by checking the results, actually more accurate
method can be used based on the approach of [SWRC07],
as in [KHS10]. Similar to [KHS10], mesh faces with weak
features, such as the human face, can not be accurately seg-
mented and the meshes with sharp features such as mechan-
ical parts also cannot work well here. Besides, there are fol-
lowing two major limitations:

Jagged and Disconnect Patches Because only dihedral
angles are used as geometry features of pairwise term, which
abandons much very important information, making the
boundaries in some meshes jagged. Additionally, for some
meshes such as horses, there are small disconnected compo-
nents, which degrade the segmentation quality. To alleviate
these problems, more emphasis should be put on pairwise
features in the belief propagation process. Integrating graph
cut as a post-processing to the overall pipeline may also help.

Human Mislabeling. The human mislabeling problem
arises from the fact that the true boundaries of the meshes
are hard to mark for human beings. Actually, it is one big
source of noises and many typical de-noising methods can
help. The entropy regularizer we added actually plays such a

c© 2012 The Author(s)
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de-noising role and shows desired results on several datasets.
However, our method cannot totally solve the issue, and
more further works are required on it.

Besides solving above problems, our approach can be ex-
panded in the following two aspects, and providing a perfor-
mance statistics of many prominent learning techniques on
different datasets is valuable.

Hierarchical Models. Most methods for mesh segmenta-
tion are based on a single choice of quantisation of an mesh
space - faces, segments or group of segments, which has
its pros and cons. Our semi-supervised CRF model can be
extended to a hierarchical model where graphs combining
different quantisation levels can be built. The hierarchical
model is likely to integrate the benefits from features of dif-
ferent quantisations and yields better results.

Partially Labeled Semi-supervised Mesh Segmenta-
tion. The nature of semi-supervised methods determines that
our method can work well even if the labeled meshes are
just partially labeled, which may result from missing data
or human error. So this semi-supervised mesh segmentation
method can be applied to this kind of meshes and likely to
produce much better results than the supervised one.
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